Rate this Page

RReLU#

classtorch.nn.modules.activation.RReLU(lower=0.125,upper=0.3333333333333333,inplace=False)[source]#

Applies the randomized leaky rectified linear unit function, element-wise.

Method described in the paper:Empirical Evaluation of Rectified Activations in Convolutional Network.

The function is defined as:

RReLU(x)={xif x0ax otherwise \text{RReLU}(x) =\begin{cases} x & \text{if } x \geq 0 \\ ax & \text{ otherwise }\end{cases}

whereaa is randomly sampled from uniform distributionU(lower,upper)\mathcal{U}(\text{lower}, \text{upper}) during training while duringevaluationaa is fixed witha=lower+upper2a = \frac{\text{lower} + \text{upper}}{2}.

Parameters
  • lower (float) – lower bound of the uniform distribution. Default:18\frac{1}{8}

  • upper (float) – upper bound of the uniform distribution. Default:13\frac{1}{3}

  • inplace (bool) – can optionally do the operation in-place. Default:False

Shape:
  • Input:()(*), where* means any number of dimensions.

  • Output:()(*), same shape as the input.

../_images/RReLU.png

Examples:

>>>m=nn.RReLU(0.1,0.3)>>>input=torch.randn(2)>>>output=m(input)
extra_repr()[source]#

Return the extra representation of the module.

Return type

str

forward(input)[source]#

Runs the forward pass.

Return type

Tensor