torch.nn.functional.embedding_bag#
- torch.nn.functional.embedding_bag(input,weight,offsets=None,max_norm=None,norm_type=2,scale_grad_by_freq=False,mode='mean',sparse=False,per_sample_weights=None,include_last_offset=False,padding_idx=None)[source]#
Compute sums, means or maxes ofbags of embeddings.
Calculation is done without instantiating the intermediate embeddings.See
torch.nn.EmbeddingBagfor more details.Note
This operation may produce nondeterministic gradients when given tensors on a CUDA device. SeeReproducibility for more information.
- Parameters
input (LongTensor) – Tensor containing bags of indices into the embedding matrix
weight (Tensor) – The embedding matrix with number of rows equal to the maximum possible index + 1,and number of columns equal to the embedding size
offsets (LongTensor,optional) – Only used when
inputis 1D.offsetsdeterminesthe starting index position of each bag (sequence) ininput.max_norm (float,optional) – If given, each embedding vector with norm larger than
max_normis renormalized to have normmax_norm.Note: this will modifyweightin-place.norm_type (float,optional) – The
pin thep-norm to compute for themax_normoption.Default2.scale_grad_by_freq (bool,optional) – if given, this will scale gradients by the inverse of frequency ofthe words in the mini-batch. Default
False.Note: this option is not supported whenmode="max".mode (str,optional) –
"sum","mean"or"max". Specifies the way to reduce the bag.Default:"mean"sparse (bool,optional) – if
True, gradient w.r.t.weightwill be a sparse tensor. See Notes undertorch.nn.Embeddingfor more details regarding sparse gradients.Note: this option is not supported whenmode="max".per_sample_weights (Tensor,optional) – a tensor of float / double weights, or Noneto indicate all weights should be taken to be 1. If specified,
per_sample_weightsmust have exactly the same shape as input and is treated as having the sameoffsets, if those are not None.include_last_offset (bool,optional) – if
True, the size of offsets is equal to the number of bags + 1.The last element is the size of the input, or the ending index position of the last bag (sequence).padding_idx (int,optional) – If specified, the entries at
padding_idxdo not contribute to thegradient; therefore, the embedding vector atpadding_idxis not updatedduring training, i.e. it remains as a fixed “pad”. Note that the embeddingvector atpadding_idxis excluded from the reduction.
- Return type
- Shape:
input(LongTensor) andoffsets(LongTensor, optional)If
inputis 2D of shape(B, N), it will be treated asBbags (sequences)each of fixed lengthN, and this will returnBvalues aggregated in a waydepending on themode.offsetsis ignored and required to beNonein this case.If
inputis 1D of shape(N), it will be treated as a concatenation ofmultiple bags (sequences).offsetsis required to be a 1D tensor containingthe starting index positions of each bag ininput. Therefore, foroffsetsof shape(B),inputwill be viewed as havingBbags.Empty bags (i.e., having 0-length) will have returned vectors filled by zeros.
weight(Tensor): the learnable weights of the module of shape(num_embeddings, embedding_dim)per_sample_weights(Tensor, optional). Has the same shape asinput.output: aggregated embedding values of shape(B, embedding_dim)
Examples:
>>># an Embedding module containing 10 tensors of size 3>>>embedding_matrix=torch.rand(10,3)>>># a batch of 2 samples of 4 indices each>>>input=torch.tensor([1,2,4,5,4,3,2,9])>>>offsets=torch.tensor([0,4])>>>F.embedding_bag(input,embedding_matrix,offsets)tensor([[ 0.3397, 0.3552, 0.5545], [ 0.5893, 0.4386, 0.5882]])>>># example with padding_idx>>>embedding_matrix=torch.rand(10,3)>>>input=torch.tensor([2,2,2,2,4,3,2,9])>>>offsets=torch.tensor([0,4])>>>F.embedding_bag(input,embedding_matrix,offsets,padding_idx=2,mode='sum')tensor([[ 0.0000, 0.0000, 0.0000], [-0.7082, 3.2145, -2.6251]])