Rate this Page

ReflectionPad1d#

classtorch.nn.ReflectionPad1d(padding)[source]#

Pads the input tensor using the reflection of the input boundary.

ForN-dimensional padding, usetorch.nn.functional.pad().

Parameters

padding (int,tuple) – the size of the padding. If isint, uses the samepadding in all boundaries. If a 2-tuple, uses(padding_left\text{padding\_left},padding_right\text{padding\_right})Note that padding size should be less than the corresponding input dimension.

Shape:

Examples:

>>>m=nn.ReflectionPad1d(2)>>>input=torch.arange(8,dtype=torch.float).reshape(1,2,4)>>>inputtensor([[[0., 1., 2., 3.],         [4., 5., 6., 7.]]])>>>m(input)tensor([[[2., 1., 0., 1., 2., 3., 2., 1.],         [6., 5., 4., 5., 6., 7., 6., 5.]]])>>># using different paddings for different sides>>>m=nn.ReflectionPad1d((3,1))>>>m(input)tensor([[[3., 2., 1., 0., 1., 2., 3., 2.],         [7., 6., 5., 4., 5., 6., 7., 6.]]])