Rate this Page

RNNCell#

classtorch.nn.RNNCell(input_size,hidden_size,bias=True,nonlinearity='tanh',device=None,dtype=None)[source]#

An Elman RNN cell with tanh or ReLU non-linearity.

h=tanh(Wihx+bih+Whhh+bhh)h' = \tanh(W_{ih} x + b_{ih} + W_{hh} h + b_{hh})

Ifnonlinearity is‘relu’, then ReLU is used in place of tanh.

Parameters
  • input_size (int) – The number of expected features in the inputx

  • hidden_size (int) – The number of features in the hidden stateh

  • bias (bool) – IfFalse, then the layer does not use bias weightsb_ih andb_hh.Default:True

  • nonlinearity (str) – The non-linearity to use. Can be either'tanh' or'relu'. Default:'tanh'

Inputs: input, hidden
  • input: tensor containing input features

  • hidden: tensor containing the initial hidden stateDefaults to zero if not provided.

Outputs: h’
  • h’ of shape(batch, hidden_size): tensor containing the next hidden statefor each element in the batch

Shape:
  • input:(N,Hin)(N, H_{in}) or(Hin)(H_{in}) tensor containing input features whereHinH_{in} =input_size.

  • hidden:(N,Hout)(N, H_{out}) or(Hout)(H_{out}) tensor containing the initial hiddenstate whereHoutH_{out} =hidden_size. Defaults to zero if not provided.

  • output:(N,Hout)(N, H_{out}) or(Hout)(H_{out}) tensor containing the next hidden state.

Variables
  • weight_ih (torch.Tensor) – the learnable input-hidden weights, of shape(hidden_size, input_size)

  • weight_hh (torch.Tensor) – the learnable hidden-hidden weights, of shape(hidden_size, hidden_size)

  • bias_ih – the learnable input-hidden bias, of shape(hidden_size)

  • bias_hh – the learnable hidden-hidden bias, of shape(hidden_size)

Note

All the weights and biases are initialized fromU(k,k)\mathcal{U}(-\sqrt{k}, \sqrt{k})wherek=1hidden_sizek = \frac{1}{\text{hidden\_size}}

Examples:

>>>rnn=nn.RNNCell(10,20)>>>input=torch.randn(6,3,10)>>>hx=torch.randn(3,20)>>>output=[]>>>foriinrange(6):...hx=rnn(input[i],hx)...output.append(hx)