FractionalMaxPool3d#
- classtorch.nn.FractionalMaxPool3d(kernel_size,output_size=None,output_ratio=None,return_indices=False,_random_samples=None)[source]#
Applies a 3D fractional max pooling over an input signal composed of several input planes.
Fractional MaxPooling is described in detail in the paperFractional MaxPooling by Ben Graham
The max-pooling operation is applied in regions by a stochasticstep size determined by the target output size.The number of output features is equal to the number of input planes.
Note
Exactly one of
output_sizeoroutput_ratiomust be defined.- Parameters
kernel_size (Union[int,tuple[int,int,int]]) – the size of the window to take a max over.Can be a single numberk (for a square kernel ofk x k x k) or a tuple(kt x kh x kw),k must greater than 0.
output_size (Union[int,tuple[int,int,int]]) – the target output size of the image of the formoT x oH x oW.Can be a tuple(oT, oH, oW) or a single number oH for a square imageoH x oH x oH
output_ratio (Union[float,tuple[float,float,float]]) – If one wants to have an output size as a ratio of the input size, this option can be given.This has to be a number or tuple in the range (0, 1)
return_indices (bool) – if
True, will return the indices along with the outputs.Useful to pass tonn.MaxUnpool3d(). Default:False
- Shape:
Input: or.
Output: or, where or
Examples
>>># pool of cubic window of size=3, and target output size 13x12x11>>>m=nn.FractionalMaxPool3d(3,output_size=(13,12,11))>>># pool of cubic window and target output size being half of input size>>>m=nn.FractionalMaxPool3d(3,output_ratio=(0.5,0.5,0.5))>>>input=torch.randn(20,16,50,32,16)>>>output=m(input)