torch.linspace#
- torch.linspace(start,end,steps,*,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False)→Tensor#
Creates a one-dimensional tensor of size
stepswhose values are evenlyspaced fromstarttoend, inclusive. That is, the value are:From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior.
- Parameters
- Keyword Arguments
out (Tensor,optional) – the output tensor.
dtype (torch.dtype,optional) – the data type to perform the computation in.Default: if None, uses the global default dtype (see torch.get_default_dtype())when both
startandendare real,and corresponding complex dtype when either is complex.layout (
torch.layout, optional) – the desired layout of returned Tensor.Default:torch.strided.device (
torch.device, optional) – the desired device of returned tensor.Default: ifNone, uses the current device for the default tensor type(seetorch.set_default_device()).devicewill be the CPUfor CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool,optional) – If autograd should record operations on thereturned tensor. Default:
False.
Example:
>>>torch.linspace(3,10,steps=5)tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000])>>>torch.linspace(-10,10,steps=5)tensor([-10., -5., 0., 5., 10.])>>>torch.linspace(start=-10,end=10,steps=5)tensor([-10., -5., 0., 5., 10.])>>>torch.linspace(start=-10,end=10,steps=1)tensor([-10.])