torch.fft.fftn#
- torch.fft.fftn(input,s=None,dim=None,norm=None,*,out=None)→Tensor#
Computes the N dimensional discrete Fourier transform of
input.Note
The Fourier domain representation of any real signal satisfies theHermitian property:
X[i_1,...,i_n]=conj(X[-i_1,...,-i_n]). Thisfunction always returns all positive and negative frequency terms eventhough, for real inputs, half of these values are redundant.rfftn()returns the more compact one-sided representationwhere only the positive frequencies of the last dimension are returned.Note
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.However it only supports powers of 2 signal length in every transformed dimensions.
- Parameters
input (Tensor) – the input tensor
s (Tuple[int],optional) – Signal size in the transformed dimensions.If given, each dimension
dim[i]will either be zero-padded ortrimmed to the lengths[i]before computing the FFT.If a length-1is specified, no padding is done in that dimension.Default:s=[input.size(d)fordindim]dim (Tuple[int],optional) – Dimensions to be transformed.Default: all dimensions, or the last
len(s)dimensions ifsis given.norm (str,optional) –
Normalization mode. For the forward transform(
fftn()), these correspond to:"forward"- normalize by1/n"backward"- no normalization"ortho"- normalize by1/sqrt(n)(making the FFT orthonormal)
Where
n=prod(s)is the logical FFT size.Calling the backward transform (ifftn()) with the samenormalization mode will apply an overall normalization of1/nbetween the two transforms. This is required to makeifftn()the exact inverse.Default is
"backward"(no normalization).
- Keyword Arguments
out (Tensor,optional) – the output tensor.
Example
>>>x=torch.rand(10,10,dtype=torch.complex64)>>>fftn=torch.fft.fftn(x)
The discrete Fourier transform is separable, so
fftn()here is equivalent to two one-dimensionalfft()calls:>>>two_ffts=torch.fft.fft(torch.fft.fft(x,dim=0),dim=1)>>>torch.testing.assert_close(fftn,two_ffts,check_stride=False)