torch.addmm#
- torch.addmm(input,mat1,mat2,out_dtype=None,*,beta=1,alpha=1,out=None)→Tensor#
Performs a matrix multiplication of the matrices
mat1andmat2.The matrixinputis added to the final result.If
mat1is a tensor,mat2is a tensor, theninputmust bebroadcastable with a tensorandoutwill be a tensor.alphaandbetaare scaling factors on matrix-vector product betweenmat1andmat2and the added matrixinputrespectively.If
betais 0, then the content ofinputwill be ignored, andnan andinf init will not be propagated.For inputs of typeFloatTensor orDoubleTensor, arguments
betaandalphamust be real numbers, otherwise they should be integers.This operation has support for arguments withsparse layouts. If
inputis sparse the result will have the same layout and ifoutis provided it must have the same layout asinput.Warning
Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported,or may not have autograd support. If you notice missing functionality pleaseopen a feature request.
This operator supportsTensorFloat32.
On certain ROCm devices, when using float16 inputs this module will usedifferent precision for backward.
- Parameters
- Keyword Arguments
beta (Number,optional) – multiplier for
input()alpha (Number,optional) – multiplier for ()
out (Tensor,optional) – the output tensor.
Example:
>>>M=torch.randn(2,3)>>>mat1=torch.randn(2,3)>>>mat2=torch.randn(3,3)>>>torch.addmm(M,mat1,mat2)tensor([[-4.8716, 1.4671, -1.3746], [ 0.7573, -3.9555, -2.8681]])