ast — Abstract Syntax Trees

Source code:Lib/ast.py


Theast module helps Python applications to process trees of the Pythonabstract syntax grammar. The abstract syntax itself might change with eachPython release; this module helps to find out programmatically what the currentgrammar looks like.

An abstract syntax tree can be generated by passingast.PyCF_ONLY_AST asa flag to thecompile() built-in function, or using theparse()helper provided in this module. The result will be a tree of objects whoseclasses all inherit fromast.AST. An abstract syntax tree can becompiled into a Python code object using the built-incompile() function.

Abstract Grammar

The abstract grammar is currently defined as follows:

-- ASDL's 4 builtin types are:-- identifier, int, string, constantmodulePython{mod=Module(stmt*body,type_ignore*type_ignores)|Interactive(stmt*body)|Expression(exprbody)|FunctionType(expr*argtypes,exprreturns)stmt=FunctionDef(identifiername,argumentsargs,stmt*body,expr*decorator_list,expr?returns,string?type_comment)|AsyncFunctionDef(identifiername,argumentsargs,stmt*body,expr*decorator_list,expr?returns,string?type_comment)|ClassDef(identifiername,expr*bases,keyword*keywords,stmt*body,expr*decorator_list)|Return(expr?value)|Delete(expr*targets)|Assign(expr*targets,exprvalue,string?type_comment)|AugAssign(exprtarget,operatorop,exprvalue)-- 'simple' indicates that we annotate simple name without parens|AnnAssign(exprtarget,exprannotation,expr?value,intsimple)-- use 'orelse' because else is a keyword in target languages|For(exprtarget,expriter,stmt*body,stmt*orelse,string?type_comment)|AsyncFor(exprtarget,expriter,stmt*body,stmt*orelse,string?type_comment)|While(exprtest,stmt*body,stmt*orelse)|If(exprtest,stmt*body,stmt*orelse)|With(withitem*items,stmt*body,string?type_comment)|AsyncWith(withitem*items,stmt*body,string?type_comment)|Raise(expr?exc,expr?cause)|Try(stmt*body,excepthandler*handlers,stmt*orelse,stmt*finalbody)|Assert(exprtest,expr?msg)|Import(alias*names)|ImportFrom(identifier?module,alias*names,int?level)|Global(identifier*names)|Nonlocal(identifier*names)|Expr(exprvalue)|Pass|Break|Continue-- col_offset is the byte offset in the utf8 string the parser usesattributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)-- BoolOp() can use left & right?expr=BoolOp(boolopop,expr*values)|NamedExpr(exprtarget,exprvalue)|BinOp(exprleft,operatorop,exprright)|UnaryOp(unaryopop,exproperand)|Lambda(argumentsargs,exprbody)|IfExp(exprtest,exprbody,exprorelse)|Dict(expr*keys,expr*values)|Set(expr*elts)|ListComp(exprelt,comprehension*generators)|SetComp(exprelt,comprehension*generators)|DictComp(exprkey,exprvalue,comprehension*generators)|GeneratorExp(exprelt,comprehension*generators)-- the grammar constrains where yield expressions can occur|Await(exprvalue)|Yield(expr?value)|YieldFrom(exprvalue)-- need sequences for compare to distinguish between-- x < 4 < 3 and (x < 4) < 3|Compare(exprleft,cmpop*ops,expr*comparators)|Call(exprfunc,expr*args,keyword*keywords)|FormattedValue(exprvalue,int?conversion,expr?format_spec)|JoinedStr(expr*values)|Constant(constantvalue,string?kind)-- the following expression can appear in assignment context|Attribute(exprvalue,identifierattr,expr_contextctx)|Subscript(exprvalue,exprslice,expr_contextctx)|Starred(exprvalue,expr_contextctx)|Name(identifierid,expr_contextctx)|List(expr*elts,expr_contextctx)|Tuple(expr*elts,expr_contextctx)-- can appear only in Subscript|Slice(expr?lower,expr?upper,expr?step)-- col_offset is the byte offset in the utf8 string the parser usesattributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)expr_context=Load|Store|Delboolop=And|Oroperator=Add|Sub|Mult|MatMult|Div|Mod|Pow|LShift|RShift|BitOr|BitXor|BitAnd|FloorDivunaryop=Invert|Not|UAdd|USubcmpop=Eq|NotEq|Lt|LtE|Gt|GtE|Is|IsNot|In|NotIncomprehension=(exprtarget,expriter,expr*ifs,intis_async)excepthandler=ExceptHandler(expr?type,identifier?name,stmt*body)attributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)arguments=(arg*posonlyargs,arg*args,arg?vararg,arg*kwonlyargs,expr*kw_defaults,arg?kwarg,expr*defaults)arg=(identifierarg,expr?annotation,string?type_comment)attributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)-- keyword arguments supplied to call (NULL identifier for **kwargs)keyword=(identifier?arg,exprvalue)attributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)-- import name with optional 'as' alias.alias=(identifiername,identifier?asname)withitem=(exprcontext_expr,expr?optional_vars)type_ignore=TypeIgnore(intlineno,stringtag)}

Node classes

classast.AST

This is the base of all AST node classes. The actual node classes arederived from theParser/Python.asdl file, which is reproducedbelow. They are defined in the_ast Cmodule and re-exported inast.

There is one class defined for each left-hand side symbol in the abstractgrammar (for example,ast.stmt orast.expr). In addition,there is one class defined for each constructor on the right-hand side; theseclasses inherit from the classes for the left-hand side trees. For example,ast.BinOp inherits fromast.expr. For production ruleswith alternatives (aka “sums”), the left-hand side class is abstract: onlyinstances of specific constructor nodes are ever created.

_fields

Each concrete class has an attribute_fields which gives the namesof all child nodes.

Each instance of a concrete class has one attribute for each child node,of the type as defined in the grammar. For example,ast.BinOpinstances have an attributeleft of typeast.expr.

If these attributes are marked as optional in the grammar (using aquestion mark), the value might beNone. If the attributes can havezero-or-more values (marked with an asterisk), the values are representedas Python lists. All possible attributes must be present and have validvalues when compiling an AST withcompile().

lineno
col_offset
end_lineno
end_col_offset

Instances ofast.expr andast.stmt subclasses havelineno,col_offset,end_lineno, andend_col_offset attributes. Thelineno andend_lineno are the first and last line numbers of the sourcetext span (1-indexed so the first line is line 1), and thecol_offset andend_col_offset are the correspondingUTF-8 byte offsets of the first and last tokens that generated the node.The UTF-8 offset is recorded because the parser uses UTF-8 internally.

Note that the end positions are not required by the compiler and aretherefore optional. The end offset isafter the last symbol, for exampleone can get the source segment of a one-line expression node usingsource_line[node.col_offset:node.end_col_offset].

The constructor of a classast.T parses its arguments as follows:

  • If there are positional arguments, there must be as many as there are itemsinT._fields; they will be assigned as attributes of these names.

  • If there are keyword arguments, they will set the attributes of the samenames to the given values.

For example, to create and populate anast.UnaryOp node, you coulduse

node=ast.UnaryOp()node.op=ast.USub()node.operand=ast.Constant()node.operand.value=5node.operand.lineno=0node.operand.col_offset=0node.lineno=0node.col_offset=0

or the more compact

node=ast.UnaryOp(ast.USub(),ast.Constant(5,lineno=0,col_offset=0),lineno=0,col_offset=0)

Changed in version 3.8:Classast.Constant is now used for all constants.

Changed in version 3.9:Simple indices are represented by their value, extended slices arerepresented as tuples.

Deprecated since version 3.8:Old classesast.Num,ast.Str,ast.Bytes,ast.NameConstant andast.Ellipsis are still available,but they will be removed in future Python releases. In the meantime,instantiating them will return an instance of a different class.

Deprecated since version 3.9:Old classesast.Index andast.ExtSlice are stillavailable, but they will be removed in future Python releases.In the meantime, instantiating them will return an instance ofa different class.

Note

The descriptions of the specific node classes displayed herewere initially adapted from the fantasticGreen TreeSnakes project andall its contributors.

Literals

classast.Constant(value)

A constant value. Thevalue attribute of theConstant literal contains thePython object it represents. The values represented can be simple typessuch as a number, string orNone, but also immutable container types(tuples and frozensets) if all of their elements are constant.

>>>print(ast.dump(ast.parse('123',mode='eval'),indent=4))Expression(    body=Constant(value=123))
classast.FormattedValue(value,conversion,format_spec)

Node representing a single formatting field in an f-string. If the stringcontains a single formatting field and nothing else the node can beisolated otherwise it appears inJoinedStr.

  • value is any expression node (such as a literal, a variable, or afunction call).

  • conversion is an integer:

    • -1: no formatting

    • 115:!s string formatting

    • 114:!r repr formatting

    • 97:!a ascii formatting

  • format_spec is aJoinedStr node representing the formattingof the value, orNone if no format was specified. Bothconversion andformat_spec can be set at the same time.

classast.JoinedStr(values)

An f-string, comprising a series ofFormattedValue andConstantnodes.

>>>print(ast.dump(ast.parse('f"sin({a}) is {sin(a):.3}"',mode='eval'),indent=4))Expression(    body=JoinedStr(        values=[            Constant(value='sin('),            FormattedValue(                value=Name(id='a', ctx=Load()),                conversion=-1),            Constant(value=') is '),            FormattedValue(                value=Call(                    func=Name(id='sin', ctx=Load()),                    args=[                        Name(id='a', ctx=Load())],                    keywords=[]),                conversion=-1,                format_spec=JoinedStr(                    values=[                        Constant(value='.3')]))]))
classast.List(elts,ctx)
classast.Tuple(elts,ctx)

A list or tuple.elts holds a list of nodes representing the elements.ctx isStore if the container is an assignment target (i.e.(x,y)=something), andLoad otherwise.

>>>print(ast.dump(ast.parse('[1, 2, 3]',mode='eval'),indent=4))Expression(    body=List(        elts=[            Constant(value=1),            Constant(value=2),            Constant(value=3)],        ctx=Load()))>>>print(ast.dump(ast.parse('(1, 2, 3)',mode='eval'),indent=4))Expression(    body=Tuple(        elts=[            Constant(value=1),            Constant(value=2),            Constant(value=3)],        ctx=Load()))
classast.Set(elts)

A set.elts holds a list of nodes representing the set’s elements.

>>>print(ast.dump(ast.parse('{1, 2, 3}',mode='eval'),indent=4))Expression(    body=Set(        elts=[            Constant(value=1),            Constant(value=2),            Constant(value=3)]))
classast.Dict(keys,values)

A dictionary.keys andvalues hold lists of nodes representing thekeys and the values respectively, in matching order (what would be returnedwhen callingdictionary.keys() anddictionary.values()).

When doing dictionary unpacking using dictionary literals the expression to beexpanded goes in thevalues list, with aNone at the correspondingposition inkeys.

>>>print(ast.dump(ast.parse('{"a":1, **d}',mode='eval'),indent=4))Expression(    body=Dict(        keys=[            Constant(value='a'),            None],        values=[            Constant(value=1),            Name(id='d', ctx=Load())]))

Variables

classast.Name(id,ctx)

A variable name.id holds the name as a string, andctx is one ofthe following types.

classast.Load
classast.Store
classast.Del

Variable references can be used to load the value of a variable, to assigna new value to it, or to delete it. Variable references are given a contextto distinguish these cases.

>>>print(ast.dump(ast.parse('a'),indent=4))Module(    body=[        Expr(            value=Name(id='a', ctx=Load()))],    type_ignores=[])>>>print(ast.dump(ast.parse('a = 1'),indent=4))Module(    body=[        Assign(            targets=[                Name(id='a', ctx=Store())],            value=Constant(value=1))],    type_ignores=[])>>>print(ast.dump(ast.parse('del a'),indent=4))Module(    body=[        Delete(            targets=[                Name(id='a', ctx=Del())])],    type_ignores=[])
classast.Starred(value,ctx)

A*var variable reference.value holds the variable, typically aName node. This type must be used when building aCallnode with*args.

>>>print(ast.dump(ast.parse('a, *b = it'),indent=4))Module(    body=[        Assign(            targets=[                Tuple(                    elts=[                        Name(id='a', ctx=Store()),                        Starred(                            value=Name(id='b', ctx=Store()),                            ctx=Store())],                    ctx=Store())],            value=Name(id='it', ctx=Load()))],    type_ignores=[])

Expressions

classast.Expr(value)

When an expression, such as a function call, appears as a statement by itselfwith its return value not used or stored, it is wrapped in this container.value holds one of the other nodes in this section, aConstant, aName, aLambda, aYield orYieldFrom node.

>>>print(ast.dump(ast.parse('-a'),indent=4))Module(    body=[        Expr(            value=UnaryOp(                op=USub(),                operand=Name(id='a', ctx=Load())))],    type_ignores=[])
classast.UnaryOp(op,operand)

A unary operation.op is the operator, andoperand any expressionnode.

classast.UAdd
classast.USub
classast.Not
classast.Invert

Unary operator tokens.Not is thenot keyword,Invertis the~ operator.

>>>print(ast.dump(ast.parse('not x',mode='eval'),indent=4))Expression(    body=UnaryOp(        op=Not(),        operand=Name(id='x', ctx=Load())))
classast.BinOp(left,op,right)

A binary operation (like addition or division).op is the operator, andleft andright are any expression nodes.

>>>print(ast.dump(ast.parse('x + y',mode='eval'),indent=4))Expression(    body=BinOp(        left=Name(id='x', ctx=Load()),        op=Add(),        right=Name(id='y', ctx=Load())))
classast.Add
classast.Sub
classast.Mult
classast.Div
classast.FloorDiv
classast.Mod
classast.Pow
classast.LShift
classast.RShift
classast.BitOr
classast.BitXor
classast.BitAnd
classast.MatMult

Binary operator tokens.

classast.BoolOp(op,values)

A boolean operation, ‘or’ or ‘and’.op isOr orAnd.values are the values involved. Consecutive operations with the sameoperator, such asaorborc, are collapsed into one node with severalvalues.

This doesn’t includenot, which is aUnaryOp.

>>>print(ast.dump(ast.parse('x or y',mode='eval'),indent=4))Expression(    body=BoolOp(        op=Or(),        values=[            Name(id='x', ctx=Load()),            Name(id='y', ctx=Load())]))
classast.And
classast.Or

Boolean operator tokens.

classast.Compare(left,ops,comparators)

A comparison of two or more values.left is the first value in thecomparison,ops the list of operators, andcomparators the listof values after the first element in the comparison.

>>>print(ast.dump(ast.parse('1 <= a < 10',mode='eval'),indent=4))Expression(    body=Compare(        left=Constant(value=1),        ops=[            LtE(),            Lt()],        comparators=[            Name(id='a', ctx=Load()),            Constant(value=10)]))
classast.Eq
classast.NotEq
classast.Lt
classast.LtE
classast.Gt
classast.GtE
classast.Is
classast.IsNot
classast.In
classast.NotIn

Comparison operator tokens.

classast.Call(func,args,keywords,starargs,kwargs)

A function call.func is the function, which will often be aName orAttribute object. Of the arguments:

  • args holds a list of the arguments passed by position.

  • keywords holds a list ofkeyword objects representingarguments passed by keyword.

When creating aCall node,args andkeywords are required, butthey can be empty lists.starargs andkwargs are optional.

>>>print(ast.dump(ast.parse('func(a, b=c, *d, **e)',mode='eval'),indent=4))Expression(    body=Call(        func=Name(id='func', ctx=Load()),        args=[            Name(id='a', ctx=Load()),            Starred(                value=Name(id='d', ctx=Load()),                ctx=Load())],        keywords=[            keyword(                arg='b',                value=Name(id='c', ctx=Load())),            keyword(                value=Name(id='e', ctx=Load()))]))
classast.keyword(arg,value)

A keyword argument to a function call or class definition.arg is a rawstring of the parameter name,value is a node to pass in.

classast.IfExp(test,body,orelse)

An expression such asaifbelsec. Each field holds a single node, soin the following example, all three areName nodes.

>>>print(ast.dump(ast.parse('a if b else c',mode='eval'),indent=4))Expression(    body=IfExp(        test=Name(id='b', ctx=Load()),        body=Name(id='a', ctx=Load()),        orelse=Name(id='c', ctx=Load())))
classast.Attribute(value,attr,ctx)

Attribute access, e.g.d.keys.value is a node, typically aName.attr is a bare string giving the name of the attribute,andctx isLoad,Store orDel according to howthe attribute is acted on.

>>>print(ast.dump(ast.parse('snake.colour',mode='eval'),indent=4))Expression(    body=Attribute(        value=Name(id='snake', ctx=Load()),        attr='colour',        ctx=Load()))
classast.NamedExpr(target,value)

A named expression. This AST node is produced by the assignment expressionsoperator (also known as the walrus operator). As opposed to theAssignnode in which the first argument can be multiple nodes, in this case bothtarget andvalue must be single nodes.

>>>print(ast.dump(ast.parse('(x := 4)',mode='eval'),indent=4))Expression(    body=NamedExpr(        target=Name(id='x', ctx=Store()),        value=Constant(value=4)))

Subscripting

classast.Subscript(value,slice,ctx)

A subscript, such asl[1].value is the subscripted object(usually sequence or mapping).slice is an index, slice or key.It can be aTuple and contain aSlice.ctx isLoad,Store orDelaccording to the action performed with the subscript.

>>>print(ast.dump(ast.parse('l[1:2, 3]',mode='eval'),indent=4))Expression(    body=Subscript(        value=Name(id='l', ctx=Load()),        slice=Tuple(            elts=[                Slice(                    lower=Constant(value=1),                    upper=Constant(value=2)),                Constant(value=3)],            ctx=Load()),        ctx=Load()))
classast.Slice(lower,upper,step)

Regular slicing (on the formlower:upper orlower:upper:step).Can occur only inside theslice field ofSubscript, eitherdirectly or as an element ofTuple.

>>>print(ast.dump(ast.parse('l[1:2]',mode='eval'),indent=4))Expression(    body=Subscript(        value=Name(id='l', ctx=Load()),        slice=Slice(            lower=Constant(value=1),            upper=Constant(value=2)),        ctx=Load()))

Comprehensions

classast.ListComp(elt,generators)
classast.SetComp(elt,generators)
classast.GeneratorExp(elt,generators)
classast.DictComp(key,value,generators)

List and set comprehensions, generator expressions, and dictionarycomprehensions.elt (orkey andvalue) is a single noderepresenting the part that will be evaluated for each item.

generators is a list ofcomprehension nodes.

>>>print(ast.dump(ast.parse('[x for x in numbers]',mode='eval'),indent=4))Expression(    body=ListComp(        elt=Name(id='x', ctx=Load()),        generators=[            comprehension(                target=Name(id='x', ctx=Store()),                iter=Name(id='numbers', ctx=Load()),                ifs=[],                is_async=0)]))>>>print(ast.dump(ast.parse('{x: x**2 for x in numbers}',mode='eval'),indent=4))Expression(    body=DictComp(        key=Name(id='x', ctx=Load()),        value=BinOp(            left=Name(id='x', ctx=Load()),            op=Pow(),            right=Constant(value=2)),        generators=[            comprehension(                target=Name(id='x', ctx=Store()),                iter=Name(id='numbers', ctx=Load()),                ifs=[],                is_async=0)]))>>>print(ast.dump(ast.parse('{x for x in numbers}',mode='eval'),indent=4))Expression(    body=SetComp(        elt=Name(id='x', ctx=Load()),        generators=[            comprehension(                target=Name(id='x', ctx=Store()),                iter=Name(id='numbers', ctx=Load()),                ifs=[],                is_async=0)]))
classast.comprehension(target,iter,ifs,is_async)

Onefor clause in a comprehension.target is the reference to use foreach element - typically aName orTuple node.iteris the object to iterate over.ifs is a list of test expressions: eachfor clause can have multipleifs.

is_async indicates a comprehension is asynchronous (using anasyncfor instead offor). The value is an integer (0 or 1).

>>>print(ast.dump(ast.parse('[ord(c) for line in file for c in line]',mode='eval'),...indent=4))# Multiple comprehensions in one.Expression(    body=ListComp(        elt=Call(            func=Name(id='ord', ctx=Load()),            args=[                Name(id='c', ctx=Load())],            keywords=[]),        generators=[            comprehension(                target=Name(id='line', ctx=Store()),                iter=Name(id='file', ctx=Load()),                ifs=[],                is_async=0),            comprehension(                target=Name(id='c', ctx=Store()),                iter=Name(id='line', ctx=Load()),                ifs=[],                is_async=0)]))>>>print(ast.dump(ast.parse('(n**2 for n in it if n>5 if n<10)',mode='eval'),...indent=4))# generator comprehensionExpression(    body=GeneratorExp(        elt=BinOp(            left=Name(id='n', ctx=Load()),            op=Pow(),            right=Constant(value=2)),        generators=[            comprehension(                target=Name(id='n', ctx=Store()),                iter=Name(id='it', ctx=Load()),                ifs=[                    Compare(                        left=Name(id='n', ctx=Load()),                        ops=[                            Gt()],                        comparators=[                            Constant(value=5)]),                    Compare(                        left=Name(id='n', ctx=Load()),                        ops=[                            Lt()],                        comparators=[                            Constant(value=10)])],                is_async=0)]))>>>print(ast.dump(ast.parse('[i async for i in soc]',mode='eval'),...indent=4))# Async comprehensionExpression(    body=ListComp(        elt=Name(id='i', ctx=Load()),        generators=[            comprehension(                target=Name(id='i', ctx=Store()),                iter=Name(id='soc', ctx=Load()),                ifs=[],                is_async=1)]))

Statements

classast.Assign(targets,value,type_comment)

An assignment.targets is a list of nodes, andvalue is a single node.

Multiple nodes intargets represents assigning the same value to each.Unpacking is represented by putting aTuple orListwithintargets.

type_comment

type_comment is an optional string with the type annotation as a comment.

>>>print(ast.dump(ast.parse('a = b = 1'),indent=4))# Multiple assignmentModule(    body=[        Assign(            targets=[                Name(id='a', ctx=Store()),                Name(id='b', ctx=Store())],            value=Constant(value=1))],    type_ignores=[])>>>print(ast.dump(ast.parse('a,b = c'),indent=4))# UnpackingModule(    body=[        Assign(            targets=[                Tuple(                    elts=[                        Name(id='a', ctx=Store()),                        Name(id='b', ctx=Store())],                    ctx=Store())],            value=Name(id='c', ctx=Load()))],    type_ignores=[])
classast.AnnAssign(target,annotation,value,simple)

An assignment with a type annotation.target is a single node and canbe aName, aAttribute or aSubscript.annotation is the annotation, such as aConstant orNamenode.value is a single optional node.simple is a boolean integerset to True for aName node intarget that do not appear inbetween parenthesis and are hence pure names and not expressions.

>>>print(ast.dump(ast.parse('c: int'),indent=4))Module(    body=[        AnnAssign(            target=Name(id='c', ctx=Store()),            annotation=Name(id='int', ctx=Load()),            simple=1)],    type_ignores=[])>>>print(ast.dump(ast.parse('(a): int = 1'),indent=4))# Annotation with parenthesisModule(    body=[        AnnAssign(            target=Name(id='a', ctx=Store()),            annotation=Name(id='int', ctx=Load()),            value=Constant(value=1),            simple=0)],    type_ignores=[])>>>print(ast.dump(ast.parse('a.b: int'),indent=4))# Attribute annotationModule(    body=[        AnnAssign(            target=Attribute(                value=Name(id='a', ctx=Load()),                attr='b',                ctx=Store()),            annotation=Name(id='int', ctx=Load()),            simple=0)],    type_ignores=[])>>>print(ast.dump(ast.parse('a[1]: int'),indent=4))# Subscript annotationModule(    body=[        AnnAssign(            target=Subscript(                value=Name(id='a', ctx=Load()),                slice=Constant(value=1),                ctx=Store()),            annotation=Name(id='int', ctx=Load()),            simple=0)],    type_ignores=[])
classast.AugAssign(target,op,value)

Augmented assignment, such asa+=1. In the following example,target is aName node forx (with theStorecontext),op isAdd, andvalue is aConstant withvalue for 1.

Thetarget attribute connot be of classTuple orList,unlike the targets ofAssign.

>>>print(ast.dump(ast.parse('x += 2'),indent=4))Module(    body=[        AugAssign(            target=Name(id='x', ctx=Store()),            op=Add(),            value=Constant(value=2))],    type_ignores=[])
classast.Raise(exc,cause)

Araise statement.exc is the exception object to be raised, normally aCall orName, orNone for a standaloneraise.cause is the optional part fory inraisexfromy.

>>>print(ast.dump(ast.parse('raise x from y'),indent=4))Module(    body=[        Raise(            exc=Name(id='x', ctx=Load()),            cause=Name(id='y', ctx=Load()))],    type_ignores=[])
classast.Assert(test,msg)

An assertion.test holds the condition, such as aCompare node.msg holds the failure message.

>>>print(ast.dump(ast.parse('assert x,y'),indent=4))Module(    body=[        Assert(            test=Name(id='x', ctx=Load()),            msg=Name(id='y', ctx=Load()))],    type_ignores=[])
classast.Delete(targets)

Represents adel statement.targets is a list of nodes, such asName,Attribute orSubscript nodes.

>>>print(ast.dump(ast.parse('del x,y,z'),indent=4))Module(    body=[        Delete(            targets=[                Name(id='x', ctx=Del()),                Name(id='y', ctx=Del()),                Name(id='z', ctx=Del())])],    type_ignores=[])
classast.Pass

Apass statement.

>>>print(ast.dump(ast.parse('pass'),indent=4))Module(    body=[        Pass()],    type_ignores=[])

Other statements which are only applicable inside functions or loops aredescribed in other sections.

Imports

classast.Import(names)

An import statement.names is a list ofalias nodes.

>>>print(ast.dump(ast.parse('import x,y,z'),indent=4))Module(    body=[        Import(            names=[                alias(name='x'),                alias(name='y'),                alias(name='z')])],    type_ignores=[])
classast.ImportFrom(module,names,level)

Representsfromximporty.module is a raw string of the ‘from’ name,without any leading dots, orNone for statements such asfrom.importfoo.level is an integer holding the level of the relative import (0 meansabsolute import).

>>>print(ast.dump(ast.parse('from y import x,y,z'),indent=4))Module(    body=[        ImportFrom(            module='y',            names=[                alias(name='x'),                alias(name='y'),                alias(name='z')],            level=0)],    type_ignores=[])
classast.alias(name,asname)

Both parameters are raw strings of the names.asname can beNone ifthe regular name is to be used.

>>>print(ast.dump(ast.parse('from ..foo.bar import a as b, c'),indent=4))Module(    body=[        ImportFrom(            module='foo.bar',            names=[                alias(name='a', asname='b'),                alias(name='c')],            level=2)],    type_ignores=[])

Control flow

Note

Optional clauses such aselse are stored as an empty list if they’renot present.

classast.If(test,body,orelse)

Anif statement.test holds a single node, such as aComparenode.body andorelse each hold a list of nodes.

elif clauses don’t have a special representation in the AST, but ratherappear as extraIf nodes within theorelse section of theprevious one.

>>>print(ast.dump(ast.parse("""...if x:...   ......elif y:...   ......else:...   ......"""),indent=4))Module(    body=[        If(            test=Name(id='x', ctx=Load()),            body=[                Expr(                    value=Constant(value=Ellipsis))],            orelse=[                If(                    test=Name(id='y', ctx=Load()),                    body=[                        Expr(                            value=Constant(value=Ellipsis))],                    orelse=[                        Expr(                            value=Constant(value=Ellipsis))])])],    type_ignores=[])
classast.For(target,iter,body,orelse,type_comment)

Afor loop.target holds the variable(s) the loop assigns to, as asingleName,Tuple orList node.iter holdsthe item to be looped over, again as a single node.body andorelsecontain lists of nodes to execute. Those inorelse are executed if theloop finishes normally, rather than via abreak statement.

type_comment

type_comment is an optional string with the type annotation as a comment.

>>>print(ast.dump(ast.parse("""...for x in y:...    ......else:...    ......"""),indent=4))Module(    body=[        For(            target=Name(id='x', ctx=Store()),            iter=Name(id='y', ctx=Load()),            body=[                Expr(                    value=Constant(value=Ellipsis))],            orelse=[                Expr(                    value=Constant(value=Ellipsis))])],    type_ignores=[])
classast.While(test,body,orelse)

Awhile loop.test holds the condition, such as aComparenode.

>> print(ast.dump(ast.parse("""... while x:...    ...... else:...    ...... """), indent=4))Module(    body=[        While(            test=Name(id='x', ctx=Load()),            body=[                Expr(                    value=Constant(value=Ellipsis))],            orelse=[                Expr(                    value=Constant(value=Ellipsis))])],    type_ignores=[])
classast.Break
classast.Continue

Thebreak andcontinue statements.

>>>print(ast.dump(ast.parse("""\...for a in b:...    if a > 5:...        break...    else:...        continue......"""),indent=4))Module(    body=[        For(            target=Name(id='a', ctx=Store()),            iter=Name(id='b', ctx=Load()),            body=[                If(                    test=Compare(                        left=Name(id='a', ctx=Load()),                        ops=[                            Gt()],                        comparators=[                            Constant(value=5)]),                    body=[                        Break()],                    orelse=[                        Continue()])],            orelse=[])],    type_ignores=[])
classast.Try(body,handlers,orelse,finalbody)

try blocks. All attributes are list of nodes to execute, except forhandlers, which is a list ofExceptHandler nodes.

>>>print(ast.dump(ast.parse("""...try:...   ......except Exception:...   ......except OtherException as e:...   ......else:...   ......finally:...   ......"""),indent=4))Module(    body=[        Try(            body=[                Expr(                    value=Constant(value=Ellipsis))],            handlers=[                ExceptHandler(                    type=Name(id='Exception', ctx=Load()),                    body=[                        Expr(                            value=Constant(value=Ellipsis))]),                ExceptHandler(                    type=Name(id='OtherException', ctx=Load()),                    name='e',                    body=[                        Expr(                            value=Constant(value=Ellipsis))])],            orelse=[                Expr(                    value=Constant(value=Ellipsis))],            finalbody=[                Expr(                    value=Constant(value=Ellipsis))])],    type_ignores=[])
classast.ExceptHandler(type,name,body)

A singleexcept clause.type is the exception type it will match,typically aName node (orNone for a catch-allexcept: clause).name is a raw string for the name to hold the exception, orNone ifthe clause doesn’t haveasfoo.body is a list of nodes.

>>>print(ast.dump(ast.parse("""\...try:...    a + 1...except TypeError:...    pass..."""),indent=4))Module(    body=[        Try(            body=[                Expr(                    value=BinOp(                        left=Name(id='a', ctx=Load()),                        op=Add(),                        right=Constant(value=1)))],            handlers=[                ExceptHandler(                    type=Name(id='TypeError', ctx=Load()),                    body=[                        Pass()])],            orelse=[],            finalbody=[])],    type_ignores=[])
classast.With(items,body,type_comment)

Awith block.items is a list ofwithitem nodes representingthe context managers, andbody is the indented block inside the context.

type_comment

type_comment is an optional string with the type annotation as a comment.

classast.withitem(context_expr,optional_vars)

A single context manager in awith block.context_expr is the contextmanager, often aCall node.optional_vars is aName,Tuple orList for theasfoo part, orNone if thatisn’t used.

>>>print(ast.dump(ast.parse("""\...with a as b, c as d:...   something(b, d)..."""),indent=4))Module(    body=[        With(            items=[                withitem(                    context_expr=Name(id='a', ctx=Load()),                    optional_vars=Name(id='b', ctx=Store())),                withitem(                    context_expr=Name(id='c', ctx=Load()),                    optional_vars=Name(id='d', ctx=Store()))],            body=[                Expr(                    value=Call(                        func=Name(id='something', ctx=Load()),                        args=[                            Name(id='b', ctx=Load()),                            Name(id='d', ctx=Load())],                        keywords=[]))])],    type_ignores=[])

Function and class definitions

classast.FunctionDef(name,args,body,decorator_list,returns,type_comment)

A function definition.

  • name is a raw string of the function name.

  • args is anarguments node.

  • body is the list of nodes inside the function.

  • decorator_list is the list of decorators to be applied, stored outermostfirst (i.e. the first in the list will be applied last).

  • returns is the return annotation.

type_comment

type_comment is an optional string with the type annotation as a comment.

classast.Lambda(args,body)

lambda is a minimal function definition that can be used inside anexpression. UnlikeFunctionDef,body holds a single node.

>>>print(ast.dump(ast.parse('lambda x,y: ...'),indent=4))Module(    body=[        Expr(            value=Lambda(                args=arguments(                    posonlyargs=[],                    args=[                        arg(arg='x'),                        arg(arg='y')],                    kwonlyargs=[],                    kw_defaults=[],                    defaults=[]),                body=Constant(value=Ellipsis)))],    type_ignores=[])
classast.arguments(posonlyargs,args,vararg,kwonlyargs,kw_defaults,kwarg,defaults)

The arguments for a function.

  • posonlyargs,args andkwonlyargs are lists ofarg nodes.

  • vararg andkwarg are singlearg nodes, referring to the*args,**kwargs parameters.

  • kw_defaults is a list of default values for keyword-only arguments. Ifone isNone, the corresponding argument is required.

  • defaults is a list of default values for arguments that can be passedpositionally. If there are fewer defaults, they correspond to the last narguments.

classast.arg(arg,annotation,type_comment)

A single argument in a list.arg is a raw string of the argumentname,annotation is its annotation, such as aStr orName node.

type_comment

type_comment is an optional string with the type annotation as a comment

>>>print(ast.dump(ast.parse("""\...@decorator1...@decorator2...def f(a: 'annotation', b=1, c=2, *d, e, f=3, **g) -> 'return annotation':...    pass..."""),indent=4))Module(    body=[        FunctionDef(            name='f',            args=arguments(                posonlyargs=[],                args=[                    arg(                        arg='a',                        annotation=Constant(value='annotation')),                    arg(arg='b'),                    arg(arg='c')],                vararg=arg(arg='d'),                kwonlyargs=[                    arg(arg='e'),                    arg(arg='f')],                kw_defaults=[                    None,                    Constant(value=3)],                kwarg=arg(arg='g'),                defaults=[                    Constant(value=1),                    Constant(value=2)]),            body=[                Pass()],            decorator_list=[                Name(id='decorator1', ctx=Load()),                Name(id='decorator2', ctx=Load())],            returns=Constant(value='return annotation'))],    type_ignores=[])
classast.Return(value)

Areturn statement.

>>>print(ast.dump(ast.parse('return 4'),indent=4))Module(    body=[        Return(            value=Constant(value=4))],    type_ignores=[])
classast.Yield(value)
classast.YieldFrom(value)

Ayield oryieldfrom expression. Because these are expressions, theymust be wrapped in aExpr node if the value sent back is not used.

>>>print(ast.dump(ast.parse('yield x'),indent=4))Module(    body=[        Expr(            value=Yield(                value=Name(id='x', ctx=Load())))],    type_ignores=[])>>>print(ast.dump(ast.parse('yield from x'),indent=4))Module(    body=[        Expr(            value=YieldFrom(                value=Name(id='x', ctx=Load())))],    type_ignores=[])
classast.Global(names)
classast.Nonlocal(names)

global andnonlocal statements.names is a list of raw strings.

>>>print(ast.dump(ast.parse('global x,y,z'),indent=4))Module(    body=[        Global(            names=[                'x',                'y',                'z'])],    type_ignores=[])>>>print(ast.dump(ast.parse('nonlocal x,y,z'),indent=4))Module(    body=[        Nonlocal(            names=[                'x',                'y',                'z'])],    type_ignores=[])
classast.ClassDef(name,bases,keywords,starargs,kwargs,body,decorator_list)

A class definition.

  • name is a raw string for the class name

  • bases is a list of nodes for explicitly specified base classes.

  • keywords is a list ofkeyword nodes, principally for ‘metaclass’.Other keywords will be passed to the metaclass, as perPEP-3115.

  • starargs andkwargs are each a single node, as in a function call.starargs will be expanded to join the list of base classes, and kwargs willbe passed to the metaclass.

  • body is a list of nodes representing the code within the classdefinition.

  • decorator_list is a list of nodes, as inFunctionDef.

>>>print(ast.dump(ast.parse("""\...@decorator1...@decorator2...class Foo(base1, base2, metaclass=meta):...    pass..."""),indent=4))Module(    body=[        ClassDef(            name='Foo',            bases=[                Name(id='base1', ctx=Load()),                Name(id='base2', ctx=Load())],            keywords=[                keyword(                    arg='metaclass',                    value=Name(id='meta', ctx=Load()))],            body=[                Pass()],            decorator_list=[                Name(id='decorator1', ctx=Load()),                Name(id='decorator2', ctx=Load())])],    type_ignores=[])

Async and await

classast.AsyncFunctionDef(name,args,body,decorator_list,returns,type_comment)

Anasyncdef function definition. Has the same fields asFunctionDef.

classast.Await(value)

Anawait expression.value is what it waits for.Only valid in the body of anAsyncFunctionDef.

>>>print(ast.dump(ast.parse("""\...async def f():...    await other_func()..."""),indent=4))Module(    body=[        AsyncFunctionDef(            name='f',            args=arguments(                posonlyargs=[],                args=[],                kwonlyargs=[],                kw_defaults=[],                defaults=[]),            body=[                Expr(                    value=Await(                        value=Call(                            func=Name(id='other_func', ctx=Load()),                            args=[],                            keywords=[])))],            decorator_list=[])],    type_ignores=[])
classast.AsyncFor(target,iter,body,orelse,type_comment)
classast.AsyncWith(items,body,type_comment)

asyncfor loops andasyncwith context managers. They have the samefields asFor andWith, respectively. Only valid in thebody of anAsyncFunctionDef.

Note

When a string is parsed byast.parse(), operator nodes (subclassesofast.operator,ast.unaryop,ast.cmpop,ast.boolop andast.expr_context) on the returned treewill be singletons. Changes to one will be reflected in all otheroccurrences of the same value (e.g.ast.Add).

ast Helpers

Apart from the node classes, theast module defines these utility functionsand classes for traversing abstract syntax trees:

ast.parse(source,filename='<unknown>',mode='exec',*,type_comments=False,feature_version=None)

Parse the source into an AST node. Equivalent tocompile(source,filename,mode,ast.PyCF_ONLY_AST).

Iftype_comments=True is given, the parser is modified to checkand return type comments as specified byPEP 484 andPEP 526.This is equivalent to addingast.PyCF_TYPE_COMMENTS to theflags passed tocompile(). This will report syntax errorsfor misplaced type comments. Without this flag, type comments willbe ignored, and thetype_comment field on selected AST nodeswill always beNone. In addition, the locations of#type:ignore comments will be returned as thetype_ignoresattribute ofModule (otherwise it is always an empty list).

In addition, ifmode is'func_type', the input syntax ismodified to correspond toPEP 484 “signature type comments”,e.g.(str,int)->List[str].

Also, settingfeature_version to a tuple(major,minor)will attempt to parse using that Python version’s grammar.Currentlymajor must equal to3. For example, settingfeature_version=(3,4) will allow the use ofasync andawait as variable names. The lowest supported version is(3,4); the highest issys.version_info[0:2].

If source contains a null character (‘0’),ValueError is raised.

Warning

Note that successfully parsing source code into an AST object doesn’tguarantee that the source code provided is valid Python code that canbe executed as the compilation step can raise furtherSyntaxErrorexceptions. For instance, the sourcereturn42 generates a validAST node for a return statement, but it cannot be compiled alone (it needsto be inside a function node).

In particular,ast.parse() won’t do any scoping checks, which thecompilation step does.

Warning

It is possible to crash the Python interpreter with asufficiently large/complex string due to stack depth limitationsin Python’s AST compiler.

Changed in version 3.8:Addedtype_comments,mode='func_type' andfeature_version.

ast.unparse(ast_obj)

Unparse anast.AST object and generate a string with codethat would produce an equivalentast.AST object if parsedback withast.parse().

Warning

The produced code string will not necessarily be equal to the originalcode that generated theast.AST object (without any compileroptimizations, such as constant tuples/frozensets).

Warning

Trying to unparse a highly complex expression would result withRecursionError.

New in version 3.9.

ast.literal_eval(node_or_string)

Safely evaluate an expression node or a string containing a Python literal orcontainer display. The string or node provided may only consist of thefollowing Python literal structures: strings, bytes, numbers, tuples, lists,dicts, sets, booleans, andNone.

This can be used for safely evaluating strings containing Python values fromuntrusted sources without the need to parse the values oneself. It is notcapable of evaluating arbitrarily complex expressions, for example involvingoperators or indexing.

Warning

It is possible to crash the Python interpreter with asufficiently large/complex string due to stack depth limitationsin Python’s AST compiler.

Changed in version 3.2:Now allows bytes and set literals.

Changed in version 3.9:Now supports creating empty sets with'set()'.

ast.get_docstring(node,clean=True)

Return the docstring of the givennode (which must be aFunctionDef,AsyncFunctionDef,ClassDef,orModule node), orNone if it has no docstring.Ifclean is true, clean up the docstring’s indentation withinspect.cleandoc().

Changed in version 3.5:AsyncFunctionDef is now supported.

ast.get_source_segment(source,node,*,padded=False)

Get source code segment of thesource that generatednode.If some location information (lineno,end_lineno,col_offset, orend_col_offset) is missing, returnNone.

Ifpadded isTrue, the first line of a multi-line statement willbe padded with spaces to match its original position.

New in version 3.8.

ast.fix_missing_locations(node)

When you compile a node tree withcompile(), the compiler expectslineno andcol_offset attributes for every node that supportsthem. This is rather tedious to fill in for generated nodes, so this helperadds these attributes recursively where not already set, by setting them tothe values of the parent node. It works recursively starting atnode.

ast.increment_lineno(node,n=1)

Increment the line number and end line number of each node in the treestarting atnode byn. This is useful to “move code” to a differentlocation in a file.

ast.copy_location(new_node,old_node)

Copy source location (lineno,col_offset,end_lineno,andend_col_offset) fromold_node tonew_node if possible,and returnnew_node.

ast.iter_fields(node)

Yield a tuple of(fieldname,value) for each field innode._fieldsthat is present onnode.

ast.iter_child_nodes(node)

Yield all direct child nodes ofnode, that is, all fields that are nodesand all items of fields that are lists of nodes.

ast.walk(node)

Recursively yield all descendant nodes in the tree starting atnode(includingnode itself), in no specified order. This is useful if you onlywant to modify nodes in place and don’t care about the context.

classast.NodeVisitor

A node visitor base class that walks the abstract syntax tree and calls avisitor function for every node found. This function may return a valuewhich is forwarded by thevisit() method.

This class is meant to be subclassed, with the subclass adding visitormethods.

visit(node)

Visit a node. The default implementation calls the method calledself.visit_classname whereclassname is the name of the nodeclass, orgeneric_visit() if that method doesn’t exist.

generic_visit(node)

This visitor callsvisit() on all children of the node.

Note that child nodes of nodes that have a custom visitor method won’t bevisited unless the visitor callsgeneric_visit() or visits themitself.

Don’t use theNodeVisitor if you want to apply changes to nodesduring traversal. For this a special visitor exists(NodeTransformer) that allows modifications.

Deprecated since version 3.8:Methodsvisit_Num(),visit_Str(),visit_Bytes(),visit_NameConstant() andvisit_Ellipsis() are deprecatednow and will not be called in future Python versions. Add thevisit_Constant() method to handle all constant nodes.

classast.NodeTransformer

ANodeVisitor subclass that walks the abstract syntax tree andallows modification of nodes.

TheNodeTransformer will walk the AST and use the return value ofthe visitor methods to replace or remove the old node. If the return valueof the visitor method isNone, the node will be removed from itslocation, otherwise it is replaced with the return value. The return valuemay be the original node in which case no replacement takes place.

Here is an example transformer that rewrites all occurrences of name lookups(foo) todata['foo']:

classRewriteName(NodeTransformer):defvisit_Name(self,node):returnSubscript(value=Name(id='data',ctx=Load()),slice=Constant(value=node.id),ctx=node.ctx)

Keep in mind that if the node you’re operating on has child nodes you musteither transform the child nodes yourself or call thegeneric_visit()method for the node first.

For nodes that were part of a collection of statements (that applies to allstatement nodes), the visitor may also return a list of nodes rather thanjust a single node.

IfNodeTransformer introduces new nodes (that weren’t part oforiginal tree) without giving them location information (such aslineno),fix_missing_locations() should be called withthe new sub-tree to recalculate the location information:

tree=ast.parse('foo',mode='eval')new_tree=fix_missing_locations(RewriteName().visit(tree))

Usually you use the transformer like this:

node=YourTransformer().visit(node)
ast.dump(node,annotate_fields=True,include_attributes=False,*,indent=None)

Return a formatted dump of the tree innode. This is mainly useful fordebugging purposes. Ifannotate_fields is true (by default),the returned string will show the names and the values for fields.Ifannotate_fields is false, the result string will be more compact byomitting unambiguous field names. Attributes such as linenumbers and column offsets are not dumped by default. If this is wanted,include_attributes can be set to true.

Ifindent is a non-negative integer or string, then the tree will bepretty-printed with that indent level. An indent levelof 0, negative, or"" will only insert newlines.None (the default)selects the single line representation. Using a positive integer indentindents that many spaces per level. Ifindent is a string (such as"\t"),that string is used to indent each level.

Changed in version 3.9:Added theindent option.

Compiler Flags

The following flags may be passed tocompile() in order to changeeffects on the compilation of a program:

ast.PyCF_ALLOW_TOP_LEVEL_AWAIT

Enables support for top-levelawait,asyncfor,asyncwithand async comprehensions.

New in version 3.8.

ast.PyCF_ONLY_AST

Generates and returns an abstract syntax tree instead of returning acompiled code object.

ast.PyCF_TYPE_COMMENTS

Enables support forPEP 484 andPEP 526 style type comments(#type:<type>,#type:ignore<stuff>).

New in version 3.8.

Command-Line Usage

New in version 3.9.

Theast module can be executed as a script from the command line.It is as simple as:

python-mast[-m<mode>][-a][infile]

The following options are accepted:

-h,--help

Show the help message and exit.

-m <mode>
--mode <mode>

Specify what kind of code must be compiled, like themode argumentinparse().

--no-type-comments

Don’t parse type comments.

-a,--include-attributes

Include attributes such as line numbers and column offsets.

-i <indent>
--indent <indent>

Indentation of nodes in AST (number of spaces).

Ifinfile is specified its contents are parsed to AST and dumpedto stdout. Otherwise, the content is read from stdin.

See also

Green Tree Snakes, an externaldocumentation resource, has good details on working with Python ASTs.

ASTTokensannotates Python ASTs with the positions of tokens and text in the sourcecode that generated them. This is helpful for tools that make source codetransformations.

leoAst.py unifies thetoken-based and parse-tree-based views of python programs by insertingtwo-way links between tokens and ast nodes.

LibCST parses code as a Concrete SyntaxTree that looks like an ast tree and keeps all formatting details. It’suseful for building automated refactoring (codemod) applications andlinters.

Parso is a Python parser that supportserror recovery and round-trip parsing for different Python versions (inmultiple Python versions). Parso is also able to list multiple syntax errorsin your python file.