ast — Abstract Syntax Trees¶
Source code:Lib/ast.py
Theast module helps Python applications to process trees of the Pythonabstract syntax grammar. The abstract syntax itself might change with eachPython release; this module helps to find out programmatically what the currentgrammar looks like.
An abstract syntax tree can be generated by passingast.PyCF_ONLY_AST asa flag to thecompile() built-in function, or using theparse()helper provided in this module. The result will be a tree of objects whoseclasses all inherit fromast.AST. An abstract syntax tree can becompiled into a Python code object using the built-incompile() function.
Abstract Grammar¶
The abstract grammar is currently defined as follows:
-- ASDL's 4 builtin types are:-- identifier, int, string, constantmodulePython{mod=Module(stmt*body,type_ignore*type_ignores)|Interactive(stmt*body)|Expression(exprbody)|FunctionType(expr*argtypes,exprreturns)stmt=FunctionDef(identifiername,argumentsargs,stmt*body,expr*decorator_list,expr?returns,string?type_comment)|AsyncFunctionDef(identifiername,argumentsargs,stmt*body,expr*decorator_list,expr?returns,string?type_comment)|ClassDef(identifiername,expr*bases,keyword*keywords,stmt*body,expr*decorator_list)|Return(expr?value)|Delete(expr*targets)|Assign(expr*targets,exprvalue,string?type_comment)|AugAssign(exprtarget,operatorop,exprvalue)-- 'simple' indicates that we annotate simple name without parens|AnnAssign(exprtarget,exprannotation,expr?value,intsimple)-- use 'orelse' because else is a keyword in target languages|For(exprtarget,expriter,stmt*body,stmt*orelse,string?type_comment)|AsyncFor(exprtarget,expriter,stmt*body,stmt*orelse,string?type_comment)|While(exprtest,stmt*body,stmt*orelse)|If(exprtest,stmt*body,stmt*orelse)|With(withitem*items,stmt*body,string?type_comment)|AsyncWith(withitem*items,stmt*body,string?type_comment)|Raise(expr?exc,expr?cause)|Try(stmt*body,excepthandler*handlers,stmt*orelse,stmt*finalbody)|Assert(exprtest,expr?msg)|Import(alias*names)|ImportFrom(identifier?module,alias*names,int?level)|Global(identifier*names)|Nonlocal(identifier*names)|Expr(exprvalue)|Pass|Break|Continue-- col_offset is the byte offset in the utf8 string the parser usesattributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)-- BoolOp() can use left & right?expr=BoolOp(boolopop,expr*values)|NamedExpr(exprtarget,exprvalue)|BinOp(exprleft,operatorop,exprright)|UnaryOp(unaryopop,exproperand)|Lambda(argumentsargs,exprbody)|IfExp(exprtest,exprbody,exprorelse)|Dict(expr*keys,expr*values)|Set(expr*elts)|ListComp(exprelt,comprehension*generators)|SetComp(exprelt,comprehension*generators)|DictComp(exprkey,exprvalue,comprehension*generators)|GeneratorExp(exprelt,comprehension*generators)-- the grammar constrains where yield expressions can occur|Await(exprvalue)|Yield(expr?value)|YieldFrom(exprvalue)-- need sequences for compare to distinguish between-- x < 4 < 3 and (x < 4) < 3|Compare(exprleft,cmpop*ops,expr*comparators)|Call(exprfunc,expr*args,keyword*keywords)|FormattedValue(exprvalue,int?conversion,expr?format_spec)|JoinedStr(expr*values)|Constant(constantvalue,string?kind)-- the following expression can appear in assignment context|Attribute(exprvalue,identifierattr,expr_contextctx)|Subscript(exprvalue,exprslice,expr_contextctx)|Starred(exprvalue,expr_contextctx)|Name(identifierid,expr_contextctx)|List(expr*elts,expr_contextctx)|Tuple(expr*elts,expr_contextctx)-- can appear only in Subscript|Slice(expr?lower,expr?upper,expr?step)-- col_offset is the byte offset in the utf8 string the parser usesattributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)expr_context=Load|Store|Delboolop=And|Oroperator=Add|Sub|Mult|MatMult|Div|Mod|Pow|LShift|RShift|BitOr|BitXor|BitAnd|FloorDivunaryop=Invert|Not|UAdd|USubcmpop=Eq|NotEq|Lt|LtE|Gt|GtE|Is|IsNot|In|NotIncomprehension=(exprtarget,expriter,expr*ifs,intis_async)excepthandler=ExceptHandler(expr?type,identifier?name,stmt*body)attributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)arguments=(arg*posonlyargs,arg*args,arg?vararg,arg*kwonlyargs,expr*kw_defaults,arg?kwarg,expr*defaults)arg=(identifierarg,expr?annotation,string?type_comment)attributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)-- keyword arguments supplied to call (NULL identifier for **kwargs)keyword=(identifier?arg,exprvalue)attributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)-- import name with optional 'as' alias.alias=(identifiername,identifier?asname)withitem=(exprcontext_expr,expr?optional_vars)type_ignore=TypeIgnore(intlineno,stringtag)}
Node classes¶
- class
ast.AST¶ This is the base of all AST node classes. The actual node classes arederived from the
Parser/Python.asdlfile, which is reproducedbelow. They are defined in the_astCmodule and re-exported inast.There is one class defined for each left-hand side symbol in the abstractgrammar (for example,
ast.stmtorast.expr). In addition,there is one class defined for each constructor on the right-hand side; theseclasses inherit from the classes for the left-hand side trees. For example,ast.BinOpinherits fromast.expr. For production ruleswith alternatives (aka “sums”), the left-hand side class is abstract: onlyinstances of specific constructor nodes are ever created._fields¶Each concrete class has an attribute
_fieldswhich gives the namesof all child nodes.Each instance of a concrete class has one attribute for each child node,of the type as defined in the grammar. For example,
ast.BinOpinstances have an attributeleftof typeast.expr.If these attributes are marked as optional in the grammar (using aquestion mark), the value might be
None. If the attributes can havezero-or-more values (marked with an asterisk), the values are representedas Python lists. All possible attributes must be present and have validvalues when compiling an AST withcompile().
lineno¶col_offset¶end_lineno¶end_col_offset¶Instances of
ast.exprandast.stmtsubclasses havelineno,col_offset,end_lineno, andend_col_offsetattributes. Thelinenoandend_linenoare the first and last line numbers of the sourcetext span (1-indexed so the first line is line 1), and thecol_offsetandend_col_offsetare the correspondingUTF-8 byte offsets of the first and last tokens that generated the node.The UTF-8 offset is recorded because the parser uses UTF-8 internally.Note that the end positions are not required by the compiler and aretherefore optional. The end offset isafter the last symbol, for exampleone can get the source segment of a one-line expression node using
source_line[node.col_offset:node.end_col_offset].
The constructor of a class
ast.Tparses its arguments as follows:If there are positional arguments, there must be as many as there are itemsin
T._fields; they will be assigned as attributes of these names.If there are keyword arguments, they will set the attributes of the samenames to the given values.
For example, to create and populate an
ast.UnaryOpnode, you couldusenode=ast.UnaryOp()node.op=ast.USub()node.operand=ast.Constant()node.operand.value=5node.operand.lineno=0node.operand.col_offset=0node.lineno=0node.col_offset=0
or the more compact
node=ast.UnaryOp(ast.USub(),ast.Constant(5,lineno=0,col_offset=0),lineno=0,col_offset=0)
Changed in version 3.8:Classast.Constant is now used for all constants.
Changed in version 3.9:Simple indices are represented by their value, extended slices arerepresented as tuples.
Deprecated since version 3.8:Old classesast.Num,ast.Str,ast.Bytes,ast.NameConstant andast.Ellipsis are still available,but they will be removed in future Python releases. In the meantime,instantiating them will return an instance of a different class.
Deprecated since version 3.9:Old classesast.Index andast.ExtSlice are stillavailable, but they will be removed in future Python releases.In the meantime, instantiating them will return an instance ofa different class.
Note
The descriptions of the specific node classes displayed herewere initially adapted from the fantasticGreen TreeSnakes project andall its contributors.
Literals¶
- class
ast.Constant(value)¶ A constant value. The
valueattribute of theConstantliteral contains thePython object it represents. The values represented can be simple typessuch as a number, string orNone, but also immutable container types(tuples and frozensets) if all of their elements are constant.>>>print(ast.dump(ast.parse('123',mode='eval'),indent=4))Expression( body=Constant(value=123))
- class
ast.FormattedValue(value,conversion,format_spec)¶ Node representing a single formatting field in an f-string. If the stringcontains a single formatting field and nothing else the node can beisolated otherwise it appears in
JoinedStr.valueis any expression node (such as a literal, a variable, or afunction call).conversionis an integer:-1: no formatting
115:
!sstring formatting114:
!rrepr formatting97:
!aascii formatting
format_specis aJoinedStrnode representing the formattingof the value, orNoneif no format was specified. Bothconversionandformat_speccan be set at the same time.
- class
ast.JoinedStr(values)¶ An f-string, comprising a series of
FormattedValueandConstantnodes.>>>print(ast.dump(ast.parse('f"sin({a}) is {sin(a):.3}"',mode='eval'),indent=4))Expression( body=JoinedStr( values=[ Constant(value='sin('), FormattedValue( value=Name(id='a', ctx=Load()), conversion=-1), Constant(value=') is '), FormattedValue( value=Call( func=Name(id='sin', ctx=Load()), args=[ Name(id='a', ctx=Load())], keywords=[]), conversion=-1, format_spec=JoinedStr( values=[ Constant(value='.3')]))]))
- class
ast.List(elts,ctx)¶ - class
ast.Tuple(elts,ctx)¶ A list or tuple.
eltsholds a list of nodes representing the elements.ctxisStoreif the container is an assignment target (i.e.(x,y)=something), andLoadotherwise.>>>print(ast.dump(ast.parse('[1, 2, 3]',mode='eval'),indent=4))Expression( body=List( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)], ctx=Load()))>>>print(ast.dump(ast.parse('(1, 2, 3)',mode='eval'),indent=4))Expression( body=Tuple( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)], ctx=Load()))
- class
ast.Set(elts)¶ A set.
eltsholds a list of nodes representing the set’s elements.>>>print(ast.dump(ast.parse('{1, 2, 3}',mode='eval'),indent=4))Expression( body=Set( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)]))
- class
ast.Dict(keys,values)¶ A dictionary.
keysandvalueshold lists of nodes representing thekeys and the values respectively, in matching order (what would be returnedwhen callingdictionary.keys()anddictionary.values()).When doing dictionary unpacking using dictionary literals the expression to beexpanded goes in the
valueslist, with aNoneat the correspondingposition inkeys.>>>print(ast.dump(ast.parse('{"a":1, **d}',mode='eval'),indent=4))Expression( body=Dict( keys=[ Constant(value='a'), None], values=[ Constant(value=1), Name(id='d', ctx=Load())]))
Variables¶
- class
ast.Name(id,ctx)¶ A variable name.
idholds the name as a string, andctxis one ofthe following types.
- class
ast.Load¶ - class
ast.Store¶ - class
ast.Del¶ Variable references can be used to load the value of a variable, to assigna new value to it, or to delete it. Variable references are given a contextto distinguish these cases.
>>>print(ast.dump(ast.parse('a'),indent=4))Module( body=[ Expr( value=Name(id='a', ctx=Load()))], type_ignores=[])>>>print(ast.dump(ast.parse('a = 1'),indent=4))Module( body=[ Assign( targets=[ Name(id='a', ctx=Store())], value=Constant(value=1))], type_ignores=[])>>>print(ast.dump(ast.parse('del a'),indent=4))Module( body=[ Delete( targets=[ Name(id='a', ctx=Del())])], type_ignores=[])
- class
ast.Starred(value,ctx)¶ A
*varvariable reference.valueholds the variable, typically aNamenode. This type must be used when building aCallnode with*args.>>>print(ast.dump(ast.parse('a, *b = it'),indent=4))Module( body=[ Assign( targets=[ Tuple( elts=[ Name(id='a', ctx=Store()), Starred( value=Name(id='b', ctx=Store()), ctx=Store())], ctx=Store())], value=Name(id='it', ctx=Load()))], type_ignores=[])
Expressions¶
- class
ast.Expr(value)¶ When an expression, such as a function call, appears as a statement by itselfwith its return value not used or stored, it is wrapped in this container.
valueholds one of the other nodes in this section, aConstant, aName, aLambda, aYieldorYieldFromnode.>>>print(ast.dump(ast.parse('-a'),indent=4))Module( body=[ Expr( value=UnaryOp( op=USub(), operand=Name(id='a', ctx=Load())))], type_ignores=[])
- class
ast.UnaryOp(op,operand)¶ A unary operation.
opis the operator, andoperandany expressionnode.
- class
ast.UAdd¶ - class
ast.USub¶ - class
ast.Not¶ - class
ast.Invert¶ Unary operator tokens.
Notis thenotkeyword,Invertis the~operator.>>>print(ast.dump(ast.parse('not x',mode='eval'),indent=4))Expression( body=UnaryOp( op=Not(), operand=Name(id='x', ctx=Load())))
- class
ast.BinOp(left,op,right)¶ A binary operation (like addition or division).
opis the operator, andleftandrightare any expression nodes.>>>print(ast.dump(ast.parse('x + y',mode='eval'),indent=4))Expression( body=BinOp( left=Name(id='x', ctx=Load()), op=Add(), right=Name(id='y', ctx=Load())))
- class
ast.Add¶ - class
ast.Sub¶ - class
ast.Mult¶ - class
ast.Div¶ - class
ast.FloorDiv¶ - class
ast.Mod¶ - class
ast.Pow¶ - class
ast.LShift¶ - class
ast.RShift¶ - class
ast.BitOr¶ - class
ast.BitXor¶ - class
ast.BitAnd¶ - class
ast.MatMult¶ Binary operator tokens.
- class
ast.BoolOp(op,values)¶ A boolean operation, ‘or’ or ‘and’.
opisOrorAnd.valuesare the values involved. Consecutive operations with the sameoperator, such asaorborc, are collapsed into one node with severalvalues.This doesn’t include
not, which is aUnaryOp.>>>print(ast.dump(ast.parse('x or y',mode='eval'),indent=4))Expression( body=BoolOp( op=Or(), values=[ Name(id='x', ctx=Load()), Name(id='y', ctx=Load())]))
- class
ast.Compare(left,ops,comparators)¶ A comparison of two or more values.
leftis the first value in thecomparison,opsthe list of operators, andcomparatorsthe listof values after the first element in the comparison.>>>print(ast.dump(ast.parse('1 <= a < 10',mode='eval'),indent=4))Expression( body=Compare( left=Constant(value=1), ops=[ LtE(), Lt()], comparators=[ Name(id='a', ctx=Load()), Constant(value=10)]))
- class
ast.Eq¶ - class
ast.NotEq¶ - class
ast.Lt¶ - class
ast.LtE¶ - class
ast.Gt¶ - class
ast.GtE¶ - class
ast.Is¶ - class
ast.IsNot¶ - class
ast.In¶ - class
ast.NotIn¶ Comparison operator tokens.
- class
ast.Call(func,args,keywords,starargs,kwargs)¶ A function call.
funcis the function, which will often be aNameorAttributeobject. Of the arguments:argsholds a list of the arguments passed by position.keywordsholds a list ofkeywordobjects representingarguments passed by keyword.
When creating a
Callnode,argsandkeywordsare required, butthey can be empty lists.starargsandkwargsare optional.>>>print(ast.dump(ast.parse('func(a, b=c, *d, **e)',mode='eval'),indent=4))Expression( body=Call( func=Name(id='func', ctx=Load()), args=[ Name(id='a', ctx=Load()), Starred( value=Name(id='d', ctx=Load()), ctx=Load())], keywords=[ keyword( arg='b', value=Name(id='c', ctx=Load())), keyword( value=Name(id='e', ctx=Load()))]))
- class
ast.keyword(arg,value)¶ A keyword argument to a function call or class definition.
argis a rawstring of the parameter name,valueis a node to pass in.
- class
ast.IfExp(test,body,orelse)¶ An expression such as
aifbelsec. Each field holds a single node, soin the following example, all three areNamenodes.>>>print(ast.dump(ast.parse('a if b else c',mode='eval'),indent=4))Expression( body=IfExp( test=Name(id='b', ctx=Load()), body=Name(id='a', ctx=Load()), orelse=Name(id='c', ctx=Load())))
- class
ast.Attribute(value,attr,ctx)¶ Attribute access, e.g.
d.keys.valueis a node, typically aName.attris a bare string giving the name of the attribute,andctxisLoad,StoreorDelaccording to howthe attribute is acted on.>>>print(ast.dump(ast.parse('snake.colour',mode='eval'),indent=4))Expression( body=Attribute( value=Name(id='snake', ctx=Load()), attr='colour', ctx=Load()))
- class
ast.NamedExpr(target,value)¶ A named expression. This AST node is produced by the assignment expressionsoperator (also known as the walrus operator). As opposed to the
Assignnode in which the first argument can be multiple nodes, in this case bothtargetandvaluemust be single nodes.>>>print(ast.dump(ast.parse('(x := 4)',mode='eval'),indent=4))Expression( body=NamedExpr( target=Name(id='x', ctx=Store()), value=Constant(value=4)))
Subscripting¶
- class
ast.Subscript(value,slice,ctx)¶ A subscript, such as
l[1].valueis the subscripted object(usually sequence or mapping).sliceis an index, slice or key.It can be aTupleand contain aSlice.ctxisLoad,StoreorDelaccording to the action performed with the subscript.>>>print(ast.dump(ast.parse('l[1:2, 3]',mode='eval'),indent=4))Expression( body=Subscript( value=Name(id='l', ctx=Load()), slice=Tuple( elts=[ Slice( lower=Constant(value=1), upper=Constant(value=2)), Constant(value=3)], ctx=Load()), ctx=Load()))
- class
ast.Slice(lower,upper,step)¶ Regular slicing (on the form
lower:upperorlower:upper:step).Can occur only inside theslice field ofSubscript, eitherdirectly or as an element ofTuple.>>>print(ast.dump(ast.parse('l[1:2]',mode='eval'),indent=4))Expression( body=Subscript( value=Name(id='l', ctx=Load()), slice=Slice( lower=Constant(value=1), upper=Constant(value=2)), ctx=Load()))
Comprehensions¶
- class
ast.ListComp(elt,generators)¶ - class
ast.SetComp(elt,generators)¶ - class
ast.GeneratorExp(elt,generators)¶ - class
ast.DictComp(key,value,generators)¶ List and set comprehensions, generator expressions, and dictionarycomprehensions.
elt(orkeyandvalue) is a single noderepresenting the part that will be evaluated for each item.generatorsis a list ofcomprehensionnodes.>>>print(ast.dump(ast.parse('[x for x in numbers]',mode='eval'),indent=4))Expression( body=ListComp( elt=Name(id='x', ctx=Load()), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), ifs=[], is_async=0)]))>>>print(ast.dump(ast.parse('{x: x**2 for x in numbers}',mode='eval'),indent=4))Expression( body=DictComp( key=Name(id='x', ctx=Load()), value=BinOp( left=Name(id='x', ctx=Load()), op=Pow(), right=Constant(value=2)), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), ifs=[], is_async=0)]))>>>print(ast.dump(ast.parse('{x for x in numbers}',mode='eval'),indent=4))Expression( body=SetComp( elt=Name(id='x', ctx=Load()), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), ifs=[], is_async=0)]))
- class
ast.comprehension(target,iter,ifs,is_async)¶ One
forclause in a comprehension.targetis the reference to use foreach element - typically aNameorTuplenode.iteris the object to iterate over.ifsis a list of test expressions: eachforclause can have multipleifs.is_asyncindicates a comprehension is asynchronous (using anasyncforinstead offor). The value is an integer (0 or 1).>>>print(ast.dump(ast.parse('[ord(c) for line in file for c in line]',mode='eval'),...indent=4))# Multiple comprehensions in one.Expression( body=ListComp( elt=Call( func=Name(id='ord', ctx=Load()), args=[ Name(id='c', ctx=Load())], keywords=[]), generators=[ comprehension( target=Name(id='line', ctx=Store()), iter=Name(id='file', ctx=Load()), ifs=[], is_async=0), comprehension( target=Name(id='c', ctx=Store()), iter=Name(id='line', ctx=Load()), ifs=[], is_async=0)]))>>>print(ast.dump(ast.parse('(n**2 for n in it if n>5 if n<10)',mode='eval'),...indent=4))# generator comprehensionExpression( body=GeneratorExp( elt=BinOp( left=Name(id='n', ctx=Load()), op=Pow(), right=Constant(value=2)), generators=[ comprehension( target=Name(id='n', ctx=Store()), iter=Name(id='it', ctx=Load()), ifs=[ Compare( left=Name(id='n', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=5)]), Compare( left=Name(id='n', ctx=Load()), ops=[ Lt()], comparators=[ Constant(value=10)])], is_async=0)]))>>>print(ast.dump(ast.parse('[i async for i in soc]',mode='eval'),...indent=4))# Async comprehensionExpression( body=ListComp( elt=Name(id='i', ctx=Load()), generators=[ comprehension( target=Name(id='i', ctx=Store()), iter=Name(id='soc', ctx=Load()), ifs=[], is_async=1)]))
Statements¶
- class
ast.Assign(targets,value,type_comment)¶ An assignment.
targetsis a list of nodes, andvalueis a single node.Multiple nodes in
targetsrepresents assigning the same value to each.Unpacking is represented by putting aTupleorListwithintargets.type_comment¶type_commentis an optional string with the type annotation as a comment.
>>>print(ast.dump(ast.parse('a = b = 1'),indent=4))# Multiple assignmentModule( body=[ Assign( targets=[ Name(id='a', ctx=Store()), Name(id='b', ctx=Store())], value=Constant(value=1))], type_ignores=[])>>>print(ast.dump(ast.parse('a,b = c'),indent=4))# UnpackingModule( body=[ Assign( targets=[ Tuple( elts=[ Name(id='a', ctx=Store()), Name(id='b', ctx=Store())], ctx=Store())], value=Name(id='c', ctx=Load()))], type_ignores=[])
- class
ast.AnnAssign(target,annotation,value,simple)¶ An assignment with a type annotation.
targetis a single node and canbe aName, aAttributeor aSubscript.annotationis the annotation, such as aConstantorNamenode.valueis a single optional node.simpleis a boolean integerset to True for aNamenode intargetthat do not appear inbetween parenthesis and are hence pure names and not expressions.>>>print(ast.dump(ast.parse('c: int'),indent=4))Module( body=[ AnnAssign( target=Name(id='c', ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=1)], type_ignores=[])>>>print(ast.dump(ast.parse('(a): int = 1'),indent=4))# Annotation with parenthesisModule( body=[ AnnAssign( target=Name(id='a', ctx=Store()), annotation=Name(id='int', ctx=Load()), value=Constant(value=1), simple=0)], type_ignores=[])>>>print(ast.dump(ast.parse('a.b: int'),indent=4))# Attribute annotationModule( body=[ AnnAssign( target=Attribute( value=Name(id='a', ctx=Load()), attr='b', ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=0)], type_ignores=[])>>>print(ast.dump(ast.parse('a[1]: int'),indent=4))# Subscript annotationModule( body=[ AnnAssign( target=Subscript( value=Name(id='a', ctx=Load()), slice=Constant(value=1), ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=0)], type_ignores=[])
- class
ast.AugAssign(target,op,value)¶ Augmented assignment, such as
a+=1. In the following example,targetis aNamenode forx(with theStorecontext),opisAdd, andvalueis aConstantwithvalue for 1.The
targetattribute connot be of classTupleorList,unlike the targets ofAssign.>>>print(ast.dump(ast.parse('x += 2'),indent=4))Module( body=[ AugAssign( target=Name(id='x', ctx=Store()), op=Add(), value=Constant(value=2))], type_ignores=[])
- class
ast.Raise(exc,cause)¶ A
raisestatement.excis the exception object to be raised, normally aCallorName, orNonefor a standaloneraise.causeis the optional part foryinraisexfromy.>>>print(ast.dump(ast.parse('raise x from y'),indent=4))Module( body=[ Raise( exc=Name(id='x', ctx=Load()), cause=Name(id='y', ctx=Load()))], type_ignores=[])
- class
ast.Assert(test,msg)¶ An assertion.
testholds the condition, such as aComparenode.msgholds the failure message.>>>print(ast.dump(ast.parse('assert x,y'),indent=4))Module( body=[ Assert( test=Name(id='x', ctx=Load()), msg=Name(id='y', ctx=Load()))], type_ignores=[])
- class
ast.Delete(targets)¶ Represents a
delstatement.targetsis a list of nodes, such asName,AttributeorSubscriptnodes.>>>print(ast.dump(ast.parse('del x,y,z'),indent=4))Module( body=[ Delete( targets=[ Name(id='x', ctx=Del()), Name(id='y', ctx=Del()), Name(id='z', ctx=Del())])], type_ignores=[])
- class
ast.Pass¶ A
passstatement.>>>print(ast.dump(ast.parse('pass'),indent=4))Module( body=[ Pass()], type_ignores=[])
Other statements which are only applicable inside functions or loops aredescribed in other sections.
Imports¶
- class
ast.Import(names)¶ An import statement.
namesis a list ofaliasnodes.>>>print(ast.dump(ast.parse('import x,y,z'),indent=4))Module( body=[ Import( names=[ alias(name='x'), alias(name='y'), alias(name='z')])], type_ignores=[])
- class
ast.ImportFrom(module,names,level)¶ Represents
fromximporty.moduleis a raw string of the ‘from’ name,without any leading dots, orNonefor statements such asfrom.importfoo.levelis an integer holding the level of the relative import (0 meansabsolute import).>>>print(ast.dump(ast.parse('from y import x,y,z'),indent=4))Module( body=[ ImportFrom( module='y', names=[ alias(name='x'), alias(name='y'), alias(name='z')], level=0)], type_ignores=[])
- class
ast.alias(name,asname)¶ Both parameters are raw strings of the names.
asnamecan beNoneifthe regular name is to be used.>>>print(ast.dump(ast.parse('from ..foo.bar import a as b, c'),indent=4))Module( body=[ ImportFrom( module='foo.bar', names=[ alias(name='a', asname='b'), alias(name='c')], level=2)], type_ignores=[])
Control flow¶
Note
Optional clauses such aselse are stored as an empty list if they’renot present.
- class
ast.If(test,body,orelse)¶ An
ifstatement.testholds a single node, such as aComparenode.bodyandorelseeach hold a list of nodes.elifclauses don’t have a special representation in the AST, but ratherappear as extraIfnodes within theorelsesection of theprevious one.>>>print(ast.dump(ast.parse("""...if x:... ......elif y:... ......else:... ......"""),indent=4))Module( body=[ If( test=Name(id='x', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ If( test=Name(id='y', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
- class
ast.For(target,iter,body,orelse,type_comment)¶ A
forloop.targetholds the variable(s) the loop assigns to, as asingleName,TupleorListnode.iterholdsthe item to be looped over, again as a single node.bodyandorelsecontain lists of nodes to execute. Those inorelseare executed if theloop finishes normally, rather than via abreakstatement.type_comment¶type_commentis an optional string with the type annotation as a comment.
>>>print(ast.dump(ast.parse("""...for x in y:... ......else:... ......"""),indent=4))Module( body=[ For( target=Name(id='x', ctx=Store()), iter=Name(id='y', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])], type_ignores=[])
- class
ast.While(test,body,orelse)¶ A
whileloop.testholds the condition, such as aComparenode.>> print(ast.dump(ast.parse("""... while x:... ...... else:... ...... """), indent=4))Module( body=[ While( test=Name(id='x', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])], type_ignores=[])
- class
ast.Break¶ - class
ast.Continue¶ The
breakandcontinuestatements.>>>print(ast.dump(ast.parse("""\...for a in b:... if a > 5:... break... else:... continue......"""),indent=4))Module( body=[ For( target=Name(id='a', ctx=Store()), iter=Name(id='b', ctx=Load()), body=[ If( test=Compare( left=Name(id='a', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=5)]), body=[ Break()], orelse=[ Continue()])], orelse=[])], type_ignores=[])
- class
ast.Try(body,handlers,orelse,finalbody)¶ tryblocks. All attributes are list of nodes to execute, except forhandlers, which is a list ofExceptHandlernodes.>>>print(ast.dump(ast.parse("""...try:... ......except Exception:... ......except OtherException as e:... ......else:... ......finally:... ......"""),indent=4))Module( body=[ Try( body=[ Expr( value=Constant(value=Ellipsis))], handlers=[ ExceptHandler( type=Name(id='Exception', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))]), ExceptHandler( type=Name(id='OtherException', ctx=Load()), name='e', body=[ Expr( value=Constant(value=Ellipsis))])], orelse=[ Expr( value=Constant(value=Ellipsis))], finalbody=[ Expr( value=Constant(value=Ellipsis))])], type_ignores=[])
- class
ast.ExceptHandler(type,name,body)¶ A single
exceptclause.typeis the exception type it will match,typically aNamenode (orNonefor a catch-allexcept:clause).nameis a raw string for the name to hold the exception, orNoneifthe clause doesn’t haveasfoo.bodyis a list of nodes.>>>print(ast.dump(ast.parse("""\...try:... a + 1...except TypeError:... pass..."""),indent=4))Module( body=[ Try( body=[ Expr( value=BinOp( left=Name(id='a', ctx=Load()), op=Add(), right=Constant(value=1)))], handlers=[ ExceptHandler( type=Name(id='TypeError', ctx=Load()), body=[ Pass()])], orelse=[], finalbody=[])], type_ignores=[])
- class
ast.With(items,body,type_comment)¶ A
withblock.itemsis a list ofwithitemnodes representingthe context managers, andbodyis the indented block inside the context.type_comment¶type_commentis an optional string with the type annotation as a comment.
- class
ast.withitem(context_expr,optional_vars)¶ A single context manager in a
withblock.context_expris the contextmanager, often aCallnode.optional_varsis aName,TupleorListfor theasfoopart, orNoneif thatisn’t used.>>>print(ast.dump(ast.parse("""\...with a as b, c as d:... something(b, d)..."""),indent=4))Module( body=[ With( items=[ withitem( context_expr=Name(id='a', ctx=Load()), optional_vars=Name(id='b', ctx=Store())), withitem( context_expr=Name(id='c', ctx=Load()), optional_vars=Name(id='d', ctx=Store()))], body=[ Expr( value=Call( func=Name(id='something', ctx=Load()), args=[ Name(id='b', ctx=Load()), Name(id='d', ctx=Load())], keywords=[]))])], type_ignores=[])
Function and class definitions¶
- class
ast.FunctionDef(name,args,body,decorator_list,returns,type_comment)¶ A function definition.
nameis a raw string of the function name.argsis anargumentsnode.bodyis the list of nodes inside the function.decorator_listis the list of decorators to be applied, stored outermostfirst (i.e. the first in the list will be applied last).returnsis the return annotation.
type_comment¶type_commentis an optional string with the type annotation as a comment.
- class
ast.Lambda(args,body)¶ lambdais a minimal function definition that can be used inside anexpression. UnlikeFunctionDef,bodyholds a single node.>>>print(ast.dump(ast.parse('lambda x,y: ...'),indent=4))Module( body=[ Expr( value=Lambda( args=arguments( posonlyargs=[], args=[ arg(arg='x'), arg(arg='y')], kwonlyargs=[], kw_defaults=[], defaults=[]), body=Constant(value=Ellipsis)))], type_ignores=[])
- class
ast.arguments(posonlyargs,args,vararg,kwonlyargs,kw_defaults,kwarg,defaults)¶ The arguments for a function.
posonlyargs,argsandkwonlyargsare lists ofargnodes.varargandkwargare singleargnodes, referring to the*args,**kwargsparameters.kw_defaultsis a list of default values for keyword-only arguments. Ifone isNone, the corresponding argument is required.defaultsis a list of default values for arguments that can be passedpositionally. If there are fewer defaults, they correspond to the last narguments.
- class
ast.arg(arg,annotation,type_comment)¶ A single argument in a list.
argis a raw string of the argumentname,annotationis its annotation, such as aStrorNamenode.type_comment¶type_commentis an optional string with the type annotation as a comment
>>>print(ast.dump(ast.parse("""\...@decorator1...@decorator2...def f(a: 'annotation', b=1, c=2, *d, e, f=3, **g) -> 'return annotation':... pass..."""),indent=4))Module( body=[ FunctionDef( name='f', args=arguments( posonlyargs=[], args=[ arg( arg='a', annotation=Constant(value='annotation')), arg(arg='b'), arg(arg='c')], vararg=arg(arg='d'), kwonlyargs=[ arg(arg='e'), arg(arg='f')], kw_defaults=[ None, Constant(value=3)], kwarg=arg(arg='g'), defaults=[ Constant(value=1), Constant(value=2)]), body=[ Pass()], decorator_list=[ Name(id='decorator1', ctx=Load()), Name(id='decorator2', ctx=Load())], returns=Constant(value='return annotation'))], type_ignores=[])
- class
ast.Return(value)¶ A
returnstatement.>>>print(ast.dump(ast.parse('return 4'),indent=4))Module( body=[ Return( value=Constant(value=4))], type_ignores=[])
- class
ast.Yield(value)¶ - class
ast.YieldFrom(value)¶ A
yieldoryieldfromexpression. Because these are expressions, theymust be wrapped in aExprnode if the value sent back is not used.>>>print(ast.dump(ast.parse('yield x'),indent=4))Module( body=[ Expr( value=Yield( value=Name(id='x', ctx=Load())))], type_ignores=[])>>>print(ast.dump(ast.parse('yield from x'),indent=4))Module( body=[ Expr( value=YieldFrom( value=Name(id='x', ctx=Load())))], type_ignores=[])
- class
ast.Global(names)¶ - class
ast.Nonlocal(names)¶ globalandnonlocalstatements.namesis a list of raw strings.>>>print(ast.dump(ast.parse('global x,y,z'),indent=4))Module( body=[ Global( names=[ 'x', 'y', 'z'])], type_ignores=[])>>>print(ast.dump(ast.parse('nonlocal x,y,z'),indent=4))Module( body=[ Nonlocal( names=[ 'x', 'y', 'z'])], type_ignores=[])
- class
ast.ClassDef(name,bases,keywords,starargs,kwargs,body,decorator_list)¶ A class definition.
nameis a raw string for the class namebasesis a list of nodes for explicitly specified base classes.keywordsis a list ofkeywordnodes, principally for ‘metaclass’.Other keywords will be passed to the metaclass, as perPEP-3115.starargsandkwargsare each a single node, as in a function call.starargs will be expanded to join the list of base classes, and kwargs willbe passed to the metaclass.bodyis a list of nodes representing the code within the classdefinition.decorator_listis a list of nodes, as inFunctionDef.
>>>print(ast.dump(ast.parse("""\...@decorator1...@decorator2...class Foo(base1, base2, metaclass=meta):... pass..."""),indent=4))Module( body=[ ClassDef( name='Foo', bases=[ Name(id='base1', ctx=Load()), Name(id='base2', ctx=Load())], keywords=[ keyword( arg='metaclass', value=Name(id='meta', ctx=Load()))], body=[ Pass()], decorator_list=[ Name(id='decorator1', ctx=Load()), Name(id='decorator2', ctx=Load())])], type_ignores=[])
Async and await¶
- class
ast.AsyncFunctionDef(name,args,body,decorator_list,returns,type_comment)¶ An
asyncdeffunction definition. Has the same fields asFunctionDef.
- class
ast.Await(value)¶ An
awaitexpression.valueis what it waits for.Only valid in the body of anAsyncFunctionDef.
>>>print(ast.dump(ast.parse("""\...async def f():... await other_func()..."""),indent=4))Module( body=[ AsyncFunctionDef( name='f', args=arguments( posonlyargs=[], args=[], kwonlyargs=[], kw_defaults=[], defaults=[]), body=[ Expr( value=Await( value=Call( func=Name(id='other_func', ctx=Load()), args=[], keywords=[])))], decorator_list=[])], type_ignores=[])
- class
ast.AsyncFor(target,iter,body,orelse,type_comment)¶ - class
ast.AsyncWith(items,body,type_comment)¶ asyncforloops andasyncwithcontext managers. They have the samefields asForandWith, respectively. Only valid in thebody of anAsyncFunctionDef.
Note
When a string is parsed byast.parse(), operator nodes (subclassesofast.operator,ast.unaryop,ast.cmpop,ast.boolop andast.expr_context) on the returned treewill be singletons. Changes to one will be reflected in all otheroccurrences of the same value (e.g.ast.Add).
ast Helpers¶
Apart from the node classes, theast module defines these utility functionsand classes for traversing abstract syntax trees:
ast.parse(source,filename='<unknown>',mode='exec',*,type_comments=False,feature_version=None)¶Parse the source into an AST node. Equivalent to
compile(source,filename,mode,ast.PyCF_ONLY_AST).If
type_comments=Trueis given, the parser is modified to checkand return type comments as specified byPEP 484 andPEP 526.This is equivalent to addingast.PyCF_TYPE_COMMENTSto theflags passed tocompile(). This will report syntax errorsfor misplaced type comments. Without this flag, type comments willbe ignored, and thetype_commentfield on selected AST nodeswill always beNone. In addition, the locations of#type:ignorecomments will be returned as thetype_ignoresattribute ofModule(otherwise it is always an empty list).In addition, if
modeis'func_type', the input syntax ismodified to correspond toPEP 484 “signature type comments”,e.g.(str,int)->List[str].Also, setting
feature_versionto a tuple(major,minor)will attempt to parse using that Python version’s grammar.Currentlymajormust equal to3. For example, settingfeature_version=(3,4)will allow the use ofasyncandawaitas variable names. The lowest supported version is(3,4); the highest issys.version_info[0:2].If source contains a null character (‘0’),
ValueErroris raised.Warning
Note that successfully parsing source code into an AST object doesn’tguarantee that the source code provided is valid Python code that canbe executed as the compilation step can raise further
SyntaxErrorexceptions. For instance, the sourcereturn42generates a validAST node for a return statement, but it cannot be compiled alone (it needsto be inside a function node).In particular,
ast.parse()won’t do any scoping checks, which thecompilation step does.Warning
It is possible to crash the Python interpreter with asufficiently large/complex string due to stack depth limitationsin Python’s AST compiler.
Changed in version 3.8:Added
type_comments,mode='func_type'andfeature_version.
ast.unparse(ast_obj)¶Unparse an
ast.ASTobject and generate a string with codethat would produce an equivalentast.ASTobject if parsedback withast.parse().Warning
The produced code string will not necessarily be equal to the originalcode that generated the
ast.ASTobject (without any compileroptimizations, such as constant tuples/frozensets).Warning
Trying to unparse a highly complex expression would result with
RecursionError.New in version 3.9.
ast.literal_eval(node_or_string)¶Safely evaluate an expression node or a string containing a Python literal orcontainer display. The string or node provided may only consist of thefollowing Python literal structures: strings, bytes, numbers, tuples, lists,dicts, sets, booleans, and
None.This can be used for safely evaluating strings containing Python values fromuntrusted sources without the need to parse the values oneself. It is notcapable of evaluating arbitrarily complex expressions, for example involvingoperators or indexing.
Warning
It is possible to crash the Python interpreter with asufficiently large/complex string due to stack depth limitationsin Python’s AST compiler.
Changed in version 3.2:Now allows bytes and set literals.
Changed in version 3.9:Now supports creating empty sets with
'set()'.
ast.get_docstring(node,clean=True)¶Return the docstring of the givennode (which must be a
FunctionDef,AsyncFunctionDef,ClassDef,orModulenode), orNoneif it has no docstring.Ifclean is true, clean up the docstring’s indentation withinspect.cleandoc().Changed in version 3.5:
AsyncFunctionDefis now supported.
ast.get_source_segment(source,node,*,padded=False)¶Get source code segment of thesource that generatednode.If some location information (
lineno,end_lineno,col_offset, orend_col_offset) is missing, returnNone.Ifpadded is
True, the first line of a multi-line statement willbe padded with spaces to match its original position.New in version 3.8.
ast.fix_missing_locations(node)¶When you compile a node tree with
compile(), the compiler expectslinenoandcol_offsetattributes for every node that supportsthem. This is rather tedious to fill in for generated nodes, so this helperadds these attributes recursively where not already set, by setting them tothe values of the parent node. It works recursively starting atnode.
ast.increment_lineno(node,n=1)¶Increment the line number and end line number of each node in the treestarting atnode byn. This is useful to “move code” to a differentlocation in a file.
ast.copy_location(new_node,old_node)¶Copy source location (
lineno,col_offset,end_lineno,andend_col_offset) fromold_node tonew_node if possible,and returnnew_node.
ast.iter_fields(node)¶Yield a tuple of
(fieldname,value)for each field innode._fieldsthat is present onnode.
ast.iter_child_nodes(node)¶Yield all direct child nodes ofnode, that is, all fields that are nodesand all items of fields that are lists of nodes.
ast.walk(node)¶Recursively yield all descendant nodes in the tree starting atnode(includingnode itself), in no specified order. This is useful if you onlywant to modify nodes in place and don’t care about the context.
- class
ast.NodeVisitor¶ A node visitor base class that walks the abstract syntax tree and calls avisitor function for every node found. This function may return a valuewhich is forwarded by the
visit()method.This class is meant to be subclassed, with the subclass adding visitormethods.
visit(node)¶Visit a node. The default implementation calls the method called
self.visit_classnamewhereclassname is the name of the nodeclass, orgeneric_visit()if that method doesn’t exist.
generic_visit(node)¶This visitor calls
visit()on all children of the node.Note that child nodes of nodes that have a custom visitor method won’t bevisited unless the visitor calls
generic_visit()or visits themitself.
Don’t use the
NodeVisitorif you want to apply changes to nodesduring traversal. For this a special visitor exists(NodeTransformer) that allows modifications.Deprecated since version 3.8:Methods
visit_Num(),visit_Str(),visit_Bytes(),visit_NameConstant()andvisit_Ellipsis()are deprecatednow and will not be called in future Python versions. Add thevisit_Constant()method to handle all constant nodes.
- class
ast.NodeTransformer¶ A
NodeVisitorsubclass that walks the abstract syntax tree andallows modification of nodes.The
NodeTransformerwill walk the AST and use the return value ofthe visitor methods to replace or remove the old node. If the return valueof the visitor method isNone, the node will be removed from itslocation, otherwise it is replaced with the return value. The return valuemay be the original node in which case no replacement takes place.Here is an example transformer that rewrites all occurrences of name lookups(
foo) todata['foo']:classRewriteName(NodeTransformer):defvisit_Name(self,node):returnSubscript(value=Name(id='data',ctx=Load()),slice=Constant(value=node.id),ctx=node.ctx)
Keep in mind that if the node you’re operating on has child nodes you musteither transform the child nodes yourself or call the
generic_visit()method for the node first.For nodes that were part of a collection of statements (that applies to allstatement nodes), the visitor may also return a list of nodes rather thanjust a single node.
If
NodeTransformerintroduces new nodes (that weren’t part oforiginal tree) without giving them location information (such aslineno),fix_missing_locations()should be called withthe new sub-tree to recalculate the location information:tree=ast.parse('foo',mode='eval')new_tree=fix_missing_locations(RewriteName().visit(tree))
Usually you use the transformer like this:
node=YourTransformer().visit(node)
ast.dump(node,annotate_fields=True,include_attributes=False,*,indent=None)¶Return a formatted dump of the tree innode. This is mainly useful fordebugging purposes. Ifannotate_fields is true (by default),the returned string will show the names and the values for fields.Ifannotate_fields is false, the result string will be more compact byomitting unambiguous field names. Attributes such as linenumbers and column offsets are not dumped by default. If this is wanted,include_attributes can be set to true.
Ifindent is a non-negative integer or string, then the tree will bepretty-printed with that indent level. An indent levelof 0, negative, or
""will only insert newlines.None(the default)selects the single line representation. Using a positive integer indentindents that many spaces per level. Ifindent is a string (such as"\t"),that string is used to indent each level.Changed in version 3.9:Added theindent option.
Compiler Flags¶
The following flags may be passed tocompile() in order to changeeffects on the compilation of a program:
ast.PyCF_ALLOW_TOP_LEVEL_AWAIT¶Enables support for top-level
await,asyncfor,asyncwithand async comprehensions.New in version 3.8.
ast.PyCF_ONLY_AST¶Generates and returns an abstract syntax tree instead of returning acompiled code object.
Command-Line Usage¶
New in version 3.9.
Theast module can be executed as a script from the command line.It is as simple as:
python-mast[-m<mode>][-a][infile]
The following options are accepted:
-h,--help¶Show the help message and exit.
--no-type-comments¶Don’t parse type comments.
-a,--include-attributes¶Include attributes such as line numbers and column offsets.
Ifinfile is specified its contents are parsed to AST and dumpedto stdout. Otherwise, the content is read from stdin.
See also
Green Tree Snakes, an externaldocumentation resource, has good details on working with Python ASTs.
ASTTokensannotates Python ASTs with the positions of tokens and text in the sourcecode that generated them. This is helpful for tools that make source codetransformations.
leoAst.py unifies thetoken-based and parse-tree-based views of python programs by insertingtwo-way links between tokens and ast nodes.
LibCST parses code as a Concrete SyntaxTree that looks like an ast tree and keeps all formatting details. It’suseful for building automated refactoring (codemod) applications andlinters.
Parso is a Python parser that supportserror recovery and round-trip parsing for different Python versions (inmultiple Python versions). Parso is also able to list multiple syntax errorsin your python file.