fractions — Rational numbers¶
Source code:Lib/fractions.py
Thefractions module provides support for rational number arithmetic.
A Fraction instance can be constructed from a pair of rational numbers, froma single number, or from a string.
- classfractions.Fraction(numerator=0,denominator=1)¶
- classfractions.Fraction(number)
- classfractions.Fraction(string)
The first version requires thatnumerator anddenominator are instancesof
numbers.Rationaland returns a newFractioninstancewith a value equal tonumerator/denominator.Ifdenominator is zero, it raises aZeroDivisionError.The second version requires thatnumber is an instance of
numbers.Rationalor has theas_integer_ratio()method(this includesfloatanddecimal.Decimal).It returns aFractioninstance with exactly the same value.Assumed, that theas_integer_ratio()method returns a pairof coprime integers and last one is positive.Note that due to theusual issues with binary point (seeFloating-Point Arithmetic: Issues and Limitations), theargument toFraction(1.1)is not exactly equal to 11/10, and soFraction(1.1)doesnot returnFraction(11,10)as one might expect.(But see the documentation for thelimit_denominator()method below.)The last version of the constructor expects a string.The usual form for this instance is:
[sign]numerator['/'denominator]
where the optional
signmay be either ‘+’ or ‘-’ andnumeratoranddenominator(if present) are strings ofdecimal digits (underscores may be used to delimit digits as withintegral literals in code). In addition, any string that represents a finitevalue and is accepted by thefloatconstructor is alsoaccepted by theFractionconstructor. In either form theinput string may also have leading and/or trailing whitespace.Here are some examples:>>>fromfractionsimportFraction>>>Fraction(16,-10)Fraction(-8, 5)>>>Fraction(123)Fraction(123, 1)>>>Fraction()Fraction(0, 1)>>>Fraction('3/7')Fraction(3, 7)>>>Fraction(' -3/7 ')Fraction(-3, 7)>>>Fraction('1.414213\t\n')Fraction(1414213, 1000000)>>>Fraction('-.125')Fraction(-1, 8)>>>Fraction('7e-6')Fraction(7, 1000000)>>>Fraction(2.25)Fraction(9, 4)>>>Fraction(1.1)Fraction(2476979795053773, 2251799813685248)>>>fromdecimalimportDecimal>>>Fraction(Decimal('1.1'))Fraction(11, 10)
The
Fractionclass inherits from the abstract base classnumbers.Rational, and implements all of the methods andoperations from that class.Fractioninstances arehashable,and should be treated as immutable. In addition,Fractionhas the following properties and methods:Changed in version 3.2:The
Fractionconstructor now acceptsfloatanddecimal.Decimalinstances.Changed in version 3.9:The
math.gcd()function is now used to normalize thenumeratoranddenominator.math.gcd()always returns aninttype.Previously, the GCD type depended onnumerator anddenominator.Changed in version 3.11:Underscores are now permitted when creating a
Fractioninstancefrom a string, followingPEP 515 rules.Changed in version 3.11:
Fractionimplements__int__now to satisfytyping.SupportsIntinstance checks.Changed in version 3.12:Space is allowed around the slash for string inputs:
Fraction('2/3').Changed in version 3.12:
Fractioninstances now support float-style formatting, withpresentation types"e","E","f","F","g","G"and"%"".Changed in version 3.13:Formatting of
Fractioninstances without a presentation typenow supports fill, alignment, sign handling, minimum width and grouping.Changed in version 3.14:The
Fractionconstructor now accepts any objects with theas_integer_ratio()method.- numerator¶
Numerator of the Fraction in lowest term.
- denominator¶
Denominator of the Fraction in lowest terms.Guaranteed to be positive.
- as_integer_ratio()¶
Return a tuple of two integers, whose ratio is equalto the original Fraction. The ratio is in lowest termsand has a positive denominator.
Added in version 3.8.
- is_integer()¶
Return
Trueif the Fraction is an integer.Added in version 3.12.
- classmethodfrom_float(f)¶
Alternative constructor which only accepts instances of
floatornumbers.Integral. Beware thatFraction.from_float(0.3)is not the same value asFraction(3,10).
- classmethodfrom_decimal(dec)¶
Alternative constructor which only accepts instances of
decimal.Decimalornumbers.Integral.Note
From Python 3.2 onwards, you can also construct a
Fractioninstance directly from adecimal.Decimalinstance.
- classmethodfrom_number(number)¶
Alternative constructor which only accepts instances of
numbers.Integral,numbers.Rational,floatordecimal.Decimal, and objects withtheas_integer_ratio()method, but not strings.Added in version 3.14.
- limit_denominator(max_denominator=1000000)¶
Finds and returns the closest
Fractiontoselfthat hasdenominator at most max_denominator. This method is useful for findingrational approximations to a given floating-point number:>>>fromfractionsimportFraction>>>Fraction('3.1415926535897932').limit_denominator(1000)Fraction(355, 113)
or for recovering a rational number that’s represented as a float:
>>>frommathimportpi,cos>>>Fraction(cos(pi/3))Fraction(4503599627370497, 9007199254740992)>>>Fraction(cos(pi/3)).limit_denominator()Fraction(1, 2)>>>Fraction(1.1).limit_denominator()Fraction(11, 10)
- __floor__()¶
Returns the greatest
int<=self. This method canalso be accessed through themath.floor()function:>>>frommathimportfloor>>>floor(Fraction(355,113))3
- __ceil__()¶
Returns the least
int>=self. This method canalso be accessed through themath.ceil()function.
- __round__()¶
- __round__(ndigits)
The first version returns the nearest
inttoself,rounding half to even. The second version roundsselfto thenearest multiple ofFraction(1,10**ndigits)(logically, ifndigitsis negative), again rounding half toward even. Thismethod can also be accessed through theround()function.
- __format__(format_spec,/)¶
Provides support for formatting of
Fractioninstances via thestr.format()method, theformat()built-in function, orFormatted string literals.If the
format_specformat specification string does not end with oneof the presentation types'e','E','f','F','g','G'or'%'then formatting follows the general rules for fill,alignment, sign handling, minimum width, and grouping as described in theformat specification mini-language. The “alternateform” flag'#'is supported: if present, it forces the output stringto always include an explicit denominator, even when the value beingformatted is an exact integer. The zero-fill flag'0'is notsupported.If the
format_specformat specification string ends with one ofthe presentation types'e','E','f','F','g','G'or'%'then formatting follows the rules outlined for thefloattype in theFormat Specification Mini-Language section.Here are some examples:
>>>fromfractionsimportFraction>>>format(Fraction(103993,33102),'_')'103_993/33_102'>>>format(Fraction(1,7),'.^+10')'...+1/7...'>>>format(Fraction(3,1),'')'3'>>>format(Fraction(3,1),'#')'3/1'>>>format(Fraction(1,7),'.40g')'0.1428571428571428571428571428571428571429'>>>format(Fraction('1234567.855'),'_.2f')'1_234_567.86'>>>f"{Fraction(355,113):*>20.6e}"'********3.141593e+00'>>>old_price,new_price=499,672>>>"{:.2%} price increase".format(Fraction(new_price,old_price)-1)'34.67% price increase'
See also
- Module
numbers The abstract base classes making up the numeric tower.