ast — Abstract syntax trees¶
Source code:Lib/ast.py
Theast module helps Python applications to process trees of the Pythonabstract syntax grammar. The abstract syntax itself might change with eachPython release; this module helps to find out programmatically what the currentgrammar looks like.
An abstract syntax tree can be generated by passingast.PyCF_ONLY_AST asa flag to thecompile() built-in function, or using theparse()helper provided in this module. The result will be a tree of objects whoseclasses all inherit fromast.AST. An abstract syntax tree can becompiled into a Python code object using the built-incompile() function.
Abstract grammar¶
The abstract grammar is currently defined as follows:
-- ASDL's 4 builtin types are:-- identifier, int, string, constantmodulePython{mod=Module(stmt*body,type_ignore*type_ignores)|Interactive(stmt*body)|Expression(exprbody)|FunctionType(expr*argtypes,exprreturns)stmt=FunctionDef(identifiername,argumentsargs,stmt*body,expr*decorator_list,expr?returns,string?type_comment,type_param*type_params)|AsyncFunctionDef(identifiername,argumentsargs,stmt*body,expr*decorator_list,expr?returns,string?type_comment,type_param*type_params)|ClassDef(identifiername,expr*bases,keyword*keywords,stmt*body,expr*decorator_list,type_param*type_params)|Return(expr?value)|Delete(expr*targets)|Assign(expr*targets,exprvalue,string?type_comment)|TypeAlias(exprname,type_param*type_params,exprvalue)|AugAssign(exprtarget,operatorop,exprvalue)-- 'simple' indicates that we annotate simple name without parens|AnnAssign(exprtarget,exprannotation,expr?value,intsimple)-- use 'orelse' because else is a keyword in target languages|For(exprtarget,expriter,stmt*body,stmt*orelse,string?type_comment)|AsyncFor(exprtarget,expriter,stmt*body,stmt*orelse,string?type_comment)|While(exprtest,stmt*body,stmt*orelse)|If(exprtest,stmt*body,stmt*orelse)|With(withitem*items,stmt*body,string?type_comment)|AsyncWith(withitem*items,stmt*body,string?type_comment)|Match(exprsubject,match_case*cases)|Raise(expr?exc,expr?cause)|Try(stmt*body,excepthandler*handlers,stmt*orelse,stmt*finalbody)|TryStar(stmt*body,excepthandler*handlers,stmt*orelse,stmt*finalbody)|Assert(exprtest,expr?msg)|Import(alias*names)|ImportFrom(identifier?module,alias*names,int?level)|Global(identifier*names)|Nonlocal(identifier*names)|Expr(exprvalue)|Pass|Break|Continue-- col_offset is the byte offset in the utf8 string the parser usesattributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)-- BoolOp() can use left & right?expr=BoolOp(boolopop,expr*values)|NamedExpr(exprtarget,exprvalue)|BinOp(exprleft,operatorop,exprright)|UnaryOp(unaryopop,exproperand)|Lambda(argumentsargs,exprbody)|IfExp(exprtest,exprbody,exprorelse)|Dict(expr?*keys,expr*values)|Set(expr*elts)|ListComp(exprelt,comprehension*generators)|SetComp(exprelt,comprehension*generators)|DictComp(exprkey,exprvalue,comprehension*generators)|GeneratorExp(exprelt,comprehension*generators)-- the grammar constrains where yield expressions can occur|Await(exprvalue)|Yield(expr?value)|YieldFrom(exprvalue)-- need sequences for compare to distinguish between-- x < 4 < 3 and (x < 4) < 3|Compare(exprleft,cmpop*ops,expr*comparators)|Call(exprfunc,expr*args,keyword*keywords)|FormattedValue(exprvalue,intconversion,expr?format_spec)|Interpolation(exprvalue,constantstr,intconversion,expr?format_spec)|JoinedStr(expr*values)|TemplateStr(expr*values)|Constant(constantvalue,string?kind)-- the following expression can appear in assignment context|Attribute(exprvalue,identifierattr,expr_contextctx)|Subscript(exprvalue,exprslice,expr_contextctx)|Starred(exprvalue,expr_contextctx)|Name(identifierid,expr_contextctx)|List(expr*elts,expr_contextctx)|Tuple(expr*elts,expr_contextctx)-- can appear only in Subscript|Slice(expr?lower,expr?upper,expr?step)-- col_offset is the byte offset in the utf8 string the parser usesattributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)expr_context=Load|Store|Delboolop=And|Oroperator=Add|Sub|Mult|MatMult|Div|Mod|Pow|LShift|RShift|BitOr|BitXor|BitAnd|FloorDivunaryop=Invert|Not|UAdd|USubcmpop=Eq|NotEq|Lt|LtE|Gt|GtE|Is|IsNot|In|NotIncomprehension=(exprtarget,expriter,expr*ifs,intis_async)excepthandler=ExceptHandler(expr?type,identifier?name,stmt*body)attributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)arguments=(arg*posonlyargs,arg*args,arg?vararg,arg*kwonlyargs,expr*kw_defaults,arg?kwarg,expr*defaults)arg=(identifierarg,expr?annotation,string?type_comment)attributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)-- keyword arguments supplied to call (NULL identifier for **kwargs)keyword=(identifier?arg,exprvalue)attributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)-- import name with optional 'as' alias.alias=(identifiername,identifier?asname)attributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)withitem=(exprcontext_expr,expr?optional_vars)match_case=(patternpattern,expr?guard,stmt*body)pattern=MatchValue(exprvalue)|MatchSingleton(constantvalue)|MatchSequence(pattern*patterns)|MatchMapping(expr*keys,pattern*patterns,identifier?rest)|MatchClass(exprcls,pattern*patterns,identifier*kwd_attrs,pattern*kwd_patterns)|MatchStar(identifier?name)-- The optional "rest" MatchMapping parameter handles capturing extra mapping keys|MatchAs(pattern?pattern,identifier?name)|MatchOr(pattern*patterns)attributes(intlineno,intcol_offset,intend_lineno,intend_col_offset)type_ignore=TypeIgnore(intlineno,stringtag)type_param=TypeVar(identifiername,expr?bound,expr?default_value)|ParamSpec(identifiername,expr?default_value)|TypeVarTuple(identifiername,expr?default_value)attributes(intlineno,intcol_offset,intend_lineno,intend_col_offset)}
Node classes¶
- classast.AST¶
This is the base of all AST node classes. The actual node classes arederived from the
Parser/Python.asdlfile, which is reproducedabove. They are defined in the_astCmodule and re-exported inast.There is one class defined for each left-hand side symbol in the abstractgrammar (for example,
ast.stmtorast.expr). In addition,there is one class defined for each constructor on the right-hand side; theseclasses inherit from the classes for the left-hand side trees. For example,ast.BinOpinherits fromast.expr. For production ruleswith alternatives (aka “sums”), the left-hand side class is abstract: onlyinstances of specific constructor nodes are ever created.- _fields¶
Each concrete class has an attribute
_fieldswhich gives the namesof all child nodes.Each instance of a concrete class has one attribute for each child node,of the type as defined in the grammar. For example,
ast.BinOpinstances have an attributeleftof typeast.expr.If these attributes are marked as optional in the grammar (using aquestion mark), the value might be
None. If the attributes can havezero-or-more values (marked with an asterisk), the values are representedas Python lists. All possible attributes must be present and have validvalues when compiling an AST withcompile().
- _field_types¶
The
_field_typesattribute on each concrete class is a dictionarymapping field names (as also listed in_fields) to their types.>>>ast.TypeVar._field_types{'name': <class 'str'>, 'bound': ast.expr | None, 'default_value': ast.expr | None}
Added in version 3.13.
- lineno¶
- col_offset¶
- end_lineno¶
- end_col_offset¶
Instances of
ast.exprandast.stmtsubclasses havelineno,col_offset,end_lineno, andend_col_offsetattributes. Thelinenoandend_linenoare the first and last line numbers of source text span (1-indexed so thefirst line is line 1) and thecol_offsetandend_col_offsetare the corresponding UTF-8 byte offsets of the first and last tokens thatgenerated the node. The UTF-8 offset is recorded because the parser usesUTF-8 internally.Note that the end positions are not required by the compiler and aretherefore optional. The end offset isafter the last symbol, for exampleone can get the source segment of a one-line expression node using
source_line[node.col_offset:node.end_col_offset].
The constructor of a class
ast.Tparses its arguments as follows:If there are positional arguments, there must be as many as there are itemsin
T._fields; they will be assigned as attributes of these names.If there are keyword arguments, they will set the attributes of the samenames to the given values.
For example, to create and populate an
ast.UnaryOpnode, you couldusenode=ast.UnaryOp(ast.USub(),ast.Constant(5,lineno=0,col_offset=0),lineno=0,col_offset=0)
If a field that is optional in the grammar is omitted from the constructor,it defaults to
None. If a list field is omitted, it defaults to the emptylist. If a field of typeast.expr_contextis omitted, it defaults toLoad(). If any other field is omitted, aDeprecationWarningis raisedand the AST node will not have this field. In Python 3.15, this condition willraise an error.
Changed in version 3.8:Classast.Constant is now used for all constants.
Changed in version 3.9:Simple indices are represented by their value, extended slices arerepresented as tuples.
Changed in version 3.14:The__repr__() output ofAST nodes includesthe values of the node fields.
Deprecated since version 3.8:Old classesast.Num,ast.Str,ast.Bytes,ast.NameConstant andast.Ellipsis are still available,but they will be removed in future Python releases. In the meantime,instantiating them will return an instance of a different class.
Deprecated since version 3.9:Old classesast.Index andast.ExtSlice are stillavailable, but they will be removed in future Python releases.In the meantime, instantiating them will return an instance ofa different class.
Deprecated since version 3.13, will be removed in version 3.15:Previous versions of Python allowed the creation of AST nodes that were missingrequired fields. Similarly, AST node constructors allowed arbitrary keywordarguments that were set as attributes of the AST node, even if they did notmatch any of the fields of the AST node. This behavior is deprecated and willbe removed in Python 3.15.
Note
The descriptions of the specific node classes displayed herewere initially adapted from the fantasticGreen TreeSnakes project andall its contributors.
Root nodes¶
- classast.Module(body,type_ignores)¶
A Python module, as withfile input.Node type generated by
ast.parse()in the default"exec"mode.bodyis alistof the module’sStatements.type_ignoresis alistof the module’s type ignore comments;seeast.parse()for more details.>>>print(ast.dump(ast.parse('x = 1'),indent=4))Module( body=[ Assign( targets=[ Name(id='x', ctx=Store())], value=Constant(value=1))])
- classast.Expression(body)¶
A single Pythonexpression input.Node type generated by
ast.parse()whenmode is"eval".bodyis a single node,one of theexpression types.>>>print(ast.dump(ast.parse('123',mode='eval'),indent=4))Expression( body=Constant(value=123))
- classast.Interactive(body)¶
A singleinteractive input, like inInteractive Mode.Node type generated by
ast.parse()whenmode is"single".bodyis alistofstatement nodes.>>>print(ast.dump(ast.parse('x = 1; y = 2',mode='single'),indent=4))Interactive( body=[ Assign( targets=[ Name(id='x', ctx=Store())], value=Constant(value=1)), Assign( targets=[ Name(id='y', ctx=Store())], value=Constant(value=2))])
- classast.FunctionType(argtypes,returns)¶
A representation of an old-style type comments for functions,as Python versions prior to 3.5 didn’t supportPEP 484 annotations.Node type generated by
ast.parse()whenmode is"func_type".Such type comments would look like this:
defsum_two_number(a,b):# type: (int, int) -> intreturna+b
argtypesis alistofexpression nodes.returnsis a singleexpression node.>>>print(ast.dump(ast.parse('(int, str) -> List[int]',mode='func_type'),indent=4))FunctionType( argtypes=[ Name(id='int', ctx=Load()), Name(id='str', ctx=Load())], returns=Subscript( value=Name(id='List', ctx=Load()), slice=Name(id='int', ctx=Load()), ctx=Load()))
Added in version 3.8.
Literals¶
- classast.Constant(value)¶
A constant value. The
valueattribute of theConstantliteral contains thePython object it represents. The values represented can be instances ofstr,bytes,int,float,complex, andbool,and the constantsNoneandEllipsis.>>>print(ast.dump(ast.parse('123',mode='eval'),indent=4))Expression( body=Constant(value=123))
- classast.FormattedValue(value,conversion,format_spec)¶
Node representing a single formatting field in an f-string. If the stringcontains a single formatting field and nothing else the node can beisolated otherwise it appears in
JoinedStr.valueis any expression node (such as a literal, a variable, or afunction call).conversionis an integer:format_specis aJoinedStrnode representing the formattingof the value, orNoneif no format was specified. Bothconversionandformat_speccan be set at the same time.
- classast.JoinedStr(values)¶
An f-string, comprising a series of
FormattedValueandConstantnodes.>>>print(ast.dump(ast.parse('f"sin({a}) is {sin(a):.3}"',mode='eval'),indent=4))Expression( body=JoinedStr( values=[ Constant(value='sin('), FormattedValue( value=Name(id='a', ctx=Load()), conversion=-1), Constant(value=') is '), FormattedValue( value=Call( func=Name(id='sin', ctx=Load()), args=[ Name(id='a', ctx=Load())]), conversion=-1, format_spec=JoinedStr( values=[ Constant(value='.3')]))]))
- classast.TemplateStr(values,/)¶
Added in version 3.14.
Node representing a template string literal, comprising a series of
InterpolationandConstantnodes.These nodes may be any order, and do not need to be interleaved.>>>expr=ast.parse('t"{name} finished {place:ordinal}"',mode='eval')>>>print(ast.dump(expr,indent=4))Expression( body=TemplateStr( values=[ Interpolation( value=Name(id='name', ctx=Load()), str='name', conversion=-1), Constant(value=' finished '), Interpolation( value=Name(id='place', ctx=Load()), str='place', conversion=-1, format_spec=JoinedStr( values=[ Constant(value='ordinal')]))]))
- classast.Interpolation(value,str,conversion,format_spec=None)¶
Added in version 3.14.
Node representing a single interpolation field in a template string literal.
valueis any expression node (such as a literal, a variable, or afunction call).This has the same meaning asFormattedValue.value.stris a constant containing the text of the interpolation expression.If
stris set toNone, thenvalueis used to generate codewhen callingast.unparse(). This no longer guarantees that thegenerated code is identical to the original and is intended for codegeneration.conversionis an integer:-1: no conversion
97 (
ord('a')):!aASCIIconversion114 (
ord('r')):!rrepr()conversion115 (
ord('s')):!sstringconversion
This has the same meaning as
FormattedValue.conversion.format_specis aJoinedStrnode representing the formattingof the value, orNoneif no format was specified. Bothconversionandformat_speccan be set at the same time.This has the same meaning asFormattedValue.format_spec.
- classast.List(elts,ctx)¶
- classast.Tuple(elts,ctx)¶
A list or tuple.
eltsholds a list of nodes representing the elements.ctxisStoreif the container is an assignment target (i.e.(x,y)=something), andLoadotherwise.>>>print(ast.dump(ast.parse('[1, 2, 3]',mode='eval'),indent=4))Expression( body=List( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)], ctx=Load()))>>>print(ast.dump(ast.parse('(1, 2, 3)',mode='eval'),indent=4))Expression( body=Tuple( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)], ctx=Load()))
- classast.Set(elts)¶
A set.
eltsholds a list of nodes representing the set’s elements.>>>print(ast.dump(ast.parse('{1, 2, 3}',mode='eval'),indent=4))Expression( body=Set( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)]))
- classast.Dict(keys,values)¶
A dictionary.
keysandvalueshold lists of nodes representing thekeys and the values respectively, in matching order (what would be returnedwhen callingdictionary.keys()anddictionary.values()).When doing dictionary unpacking using dictionary literals the expression to beexpanded goes in the
valueslist, with aNoneat the correspondingposition inkeys.>>>print(ast.dump(ast.parse('{"a":1, **d}',mode='eval'),indent=4))Expression( body=Dict( keys=[ Constant(value='a'), None], values=[ Constant(value=1), Name(id='d', ctx=Load())]))
Variables¶
- classast.Name(id,ctx)¶
A variable name.
idholds the name as a string, andctxis one ofthe following types.
- classast.Load¶
- classast.Store¶
- classast.Del¶
Variable references can be used to load the value of a variable, to assigna new value to it, or to delete it. Variable references are given a contextto distinguish these cases.
>>>print(ast.dump(ast.parse('a'),indent=4))Module( body=[ Expr( value=Name(id='a', ctx=Load()))])>>>print(ast.dump(ast.parse('a = 1'),indent=4))Module( body=[ Assign( targets=[ Name(id='a', ctx=Store())], value=Constant(value=1))])>>>print(ast.dump(ast.parse('del a'),indent=4))Module( body=[ Delete( targets=[ Name(id='a', ctx=Del())])])
- classast.Starred(value,ctx)¶
A
*varvariable reference.valueholds the variable, typically aNamenode. This type must be used when building aCallnode with*args.>>>print(ast.dump(ast.parse('a, *b = it'),indent=4))Module( body=[ Assign( targets=[ Tuple( elts=[ Name(id='a', ctx=Store()), Starred( value=Name(id='b', ctx=Store()), ctx=Store())], ctx=Store())], value=Name(id='it', ctx=Load()))])
Expressions¶
- classast.Expr(value)¶
When an expression, such as a function call, appears as a statement by itselfwith its return value not used or stored, it is wrapped in this container.
valueholds one of the other nodes in this section, aConstant, aName, aLambda, aYieldorYieldFromnode.>>>print(ast.dump(ast.parse('-a'),indent=4))Module( body=[ Expr( value=UnaryOp( op=USub(), operand=Name(id='a', ctx=Load())))])
- classast.UnaryOp(op,operand)¶
A unary operation.
opis the operator, andoperandany expressionnode.
- classast.UAdd¶
- classast.USub¶
- classast.Not¶
- classast.Invert¶
Unary operator tokens.
Notis thenotkeyword,Invertis the~operator.>>>print(ast.dump(ast.parse('not x',mode='eval'),indent=4))Expression( body=UnaryOp( op=Not(), operand=Name(id='x', ctx=Load())))
- classast.BinOp(left,op,right)¶
A binary operation (like addition or division).
opis the operator, andleftandrightare any expression nodes.>>>print(ast.dump(ast.parse('x + y',mode='eval'),indent=4))Expression( body=BinOp( left=Name(id='x', ctx=Load()), op=Add(), right=Name(id='y', ctx=Load())))
- classast.Add¶
- classast.Sub¶
- classast.Mult¶
- classast.Div¶
- classast.FloorDiv¶
- classast.Mod¶
- classast.Pow¶
- classast.LShift¶
- classast.RShift¶
- classast.BitOr¶
- classast.BitXor¶
- classast.BitAnd¶
- classast.MatMult¶
Binary operator tokens.
- classast.BoolOp(op,values)¶
A boolean operation, ‘or’ or ‘and’.
opisOrorAnd.valuesare the values involved. Consecutive operations with the sameoperator, such asaorborc, are collapsed into one node with severalvalues.This doesn’t include
not, which is aUnaryOp.>>>print(ast.dump(ast.parse('x or y',mode='eval'),indent=4))Expression( body=BoolOp( op=Or(), values=[ Name(id='x', ctx=Load()), Name(id='y', ctx=Load())]))
- classast.Compare(left,ops,comparators)¶
A comparison of two or more values.
leftis the first value in thecomparison,opsthe list of operators, andcomparatorsthe listof values after the first element in the comparison.>>>print(ast.dump(ast.parse('1 <= a < 10',mode='eval'),indent=4))Expression( body=Compare( left=Constant(value=1), ops=[ LtE(), Lt()], comparators=[ Name(id='a', ctx=Load()), Constant(value=10)]))
- classast.Eq¶
- classast.NotEq¶
- classast.Lt¶
- classast.LtE¶
- classast.Gt¶
- classast.GtE¶
- classast.Is¶
- classast.IsNot¶
- classast.In¶
- classast.NotIn¶
Comparison operator tokens.
- classast.Call(func,args,keywords)¶
A function call.
funcis the function, which will often be aNameorAttributeobject. Of the arguments:argsholds a list of the arguments passed by position.keywordsholds a list ofkeywordobjects representingarguments passed by keyword.
The
argsandkeywordsarguments are optional and default to empty lists.>>>print(ast.dump(ast.parse('func(a, b=c, *d, **e)',mode='eval'),indent=4))Expression( body=Call( func=Name(id='func', ctx=Load()), args=[ Name(id='a', ctx=Load()), Starred( value=Name(id='d', ctx=Load()), ctx=Load())], keywords=[ keyword( arg='b', value=Name(id='c', ctx=Load())), keyword( value=Name(id='e', ctx=Load()))]))
- classast.keyword(arg,value)¶
A keyword argument to a function call or class definition.
argis a rawstring of the parameter name,valueis a node to pass in.
- classast.IfExp(test,body,orelse)¶
An expression such as
aifbelsec. Each field holds a single node, soin the following example, all three areNamenodes.>>>print(ast.dump(ast.parse('a if b else c',mode='eval'),indent=4))Expression( body=IfExp( test=Name(id='b', ctx=Load()), body=Name(id='a', ctx=Load()), orelse=Name(id='c', ctx=Load())))
- classast.Attribute(value,attr,ctx)¶
Attribute access, e.g.
d.keys.valueis a node, typically aName.attris a bare string giving the name of the attribute,andctxisLoad,StoreorDelaccording to howthe attribute is acted on.>>>print(ast.dump(ast.parse('snake.colour',mode='eval'),indent=4))Expression( body=Attribute( value=Name(id='snake', ctx=Load()), attr='colour', ctx=Load()))
- classast.NamedExpr(target,value)¶
A named expression. This AST node is produced by the assignment expressionsoperator (also known as the walrus operator). As opposed to the
Assignnode in which the first argument can be multiple nodes, in this case bothtargetandvaluemust be single nodes.>>>print(ast.dump(ast.parse('(x := 4)',mode='eval'),indent=4))Expression( body=NamedExpr( target=Name(id='x', ctx=Store()), value=Constant(value=4)))
Added in version 3.8.
Subscripting¶
- classast.Subscript(value,slice,ctx)¶
A subscript, such as
l[1].valueis the subscripted object(usually sequence or mapping).sliceis an index, slice or key.It can be aTupleand contain aSlice.ctxisLoad,StoreorDelaccording to the action performed with the subscript.>>>print(ast.dump(ast.parse('l[1:2, 3]',mode='eval'),indent=4))Expression( body=Subscript( value=Name(id='l', ctx=Load()), slice=Tuple( elts=[ Slice( lower=Constant(value=1), upper=Constant(value=2)), Constant(value=3)], ctx=Load()), ctx=Load()))
- classast.Slice(lower,upper,step)¶
Regular slicing (on the form
lower:upperorlower:upper:step).Can occur only inside theslice field ofSubscript, eitherdirectly or as an element ofTuple.>>>print(ast.dump(ast.parse('l[1:2]',mode='eval'),indent=4))Expression( body=Subscript( value=Name(id='l', ctx=Load()), slice=Slice( lower=Constant(value=1), upper=Constant(value=2)), ctx=Load()))
Comprehensions¶
- classast.ListComp(elt,generators)¶
- classast.SetComp(elt,generators)¶
- classast.GeneratorExp(elt,generators)¶
- classast.DictComp(key,value,generators)¶
List and set comprehensions, generator expressions, and dictionarycomprehensions.
elt(orkeyandvalue) is a single noderepresenting the part that will be evaluated for each item.generatorsis a list ofcomprehensionnodes.>>>print(ast.dump(...ast.parse('[x for x in numbers]',mode='eval'),...indent=4,...))Expression( body=ListComp( elt=Name(id='x', ctx=Load()), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), is_async=0)]))>>>print(ast.dump(...ast.parse('{x: x**2 for x in numbers}',mode='eval'),...indent=4,...))Expression( body=DictComp( key=Name(id='x', ctx=Load()), value=BinOp( left=Name(id='x', ctx=Load()), op=Pow(), right=Constant(value=2)), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), is_async=0)]))>>>print(ast.dump(...ast.parse('{x for x in numbers}',mode='eval'),...indent=4,...))Expression( body=SetComp( elt=Name(id='x', ctx=Load()), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), is_async=0)]))
- classast.comprehension(target,iter,ifs,is_async)¶
One
forclause in a comprehension.targetis the reference to use foreach element - typically aNameorTuplenode.iteris the object to iterate over.ifsis a list of test expressions: eachforclause can have multipleifs.is_asyncindicates a comprehension is asynchronous (using anasyncforinstead offor). The value is an integer (0 or 1).>>>print(ast.dump(ast.parse('[ord(c) for line in file for c in line]',mode='eval'),...indent=4))# Multiple comprehensions in one.Expression( body=ListComp( elt=Call( func=Name(id='ord', ctx=Load()), args=[ Name(id='c', ctx=Load())]), generators=[ comprehension( target=Name(id='line', ctx=Store()), iter=Name(id='file', ctx=Load()), is_async=0), comprehension( target=Name(id='c', ctx=Store()), iter=Name(id='line', ctx=Load()), is_async=0)]))>>>print(ast.dump(ast.parse('(n**2 for n in it if n>5 if n<10)',mode='eval'),...indent=4))# generator comprehensionExpression( body=GeneratorExp( elt=BinOp( left=Name(id='n', ctx=Load()), op=Pow(), right=Constant(value=2)), generators=[ comprehension( target=Name(id='n', ctx=Store()), iter=Name(id='it', ctx=Load()), ifs=[ Compare( left=Name(id='n', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=5)]), Compare( left=Name(id='n', ctx=Load()), ops=[ Lt()], comparators=[ Constant(value=10)])], is_async=0)]))>>>print(ast.dump(ast.parse('[i async for i in soc]',mode='eval'),...indent=4))# Async comprehensionExpression( body=ListComp( elt=Name(id='i', ctx=Load()), generators=[ comprehension( target=Name(id='i', ctx=Store()), iter=Name(id='soc', ctx=Load()), is_async=1)]))
Statements¶
- classast.Assign(targets,value,type_comment)¶
An assignment.
targetsis a list of nodes, andvalueis a single node.Multiple nodes in
targetsrepresents assigning the same value to each.Unpacking is represented by putting aTupleorListwithintargets.- type_comment¶
type_commentis an optional string with the type annotation as a comment.
>>>print(ast.dump(ast.parse('a = b = 1'),indent=4))# Multiple assignmentModule( body=[ Assign( targets=[ Name(id='a', ctx=Store()), Name(id='b', ctx=Store())], value=Constant(value=1))])>>>print(ast.dump(ast.parse('a,b = c'),indent=4))# UnpackingModule( body=[ Assign( targets=[ Tuple( elts=[ Name(id='a', ctx=Store()), Name(id='b', ctx=Store())], ctx=Store())], value=Name(id='c', ctx=Load()))])
- classast.AnnAssign(target,annotation,value,simple)¶
An assignment with a type annotation.
targetis a single node and canbe aName, anAttributeor aSubscript.annotationis the annotation, such as aConstantorNamenode.valueis a single optional node.simpleis always either 0 (indicating a “complex” target) or 1(indicating a “simple” target). A “simple” target consists solely of aNamenode that does not appear between parentheses; all othertargets are considered complex. Only simple targets appear inthe__annotations__dictionary of modules and classes.>>>print(ast.dump(ast.parse('c: int'),indent=4))Module( body=[ AnnAssign( target=Name(id='c', ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=1)])>>>print(ast.dump(ast.parse('(a): int = 1'),indent=4))# Annotation with parenthesisModule( body=[ AnnAssign( target=Name(id='a', ctx=Store()), annotation=Name(id='int', ctx=Load()), value=Constant(value=1), simple=0)])>>>print(ast.dump(ast.parse('a.b: int'),indent=4))# Attribute annotationModule( body=[ AnnAssign( target=Attribute( value=Name(id='a', ctx=Load()), attr='b', ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=0)])>>>print(ast.dump(ast.parse('a[1]: int'),indent=4))# Subscript annotationModule( body=[ AnnAssign( target=Subscript( value=Name(id='a', ctx=Load()), slice=Constant(value=1), ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=0)])
- classast.AugAssign(target,op,value)¶
Augmented assignment, such as
a+=1. In the following example,targetis aNamenode forx(with theStorecontext),opisAdd, andvalueis aConstantwithvalue for 1.The
targetattribute cannot be of classTupleorList,unlike the targets ofAssign.>>>print(ast.dump(ast.parse('x += 2'),indent=4))Module( body=[ AugAssign( target=Name(id='x', ctx=Store()), op=Add(), value=Constant(value=2))])
- classast.Raise(exc,cause)¶
A
raisestatement.excis the exception object to be raised, normally aCallorName, orNonefor a standaloneraise.causeis the optional part foryinraisexfromy.>>>print(ast.dump(ast.parse('raise x from y'),indent=4))Module( body=[ Raise( exc=Name(id='x', ctx=Load()), cause=Name(id='y', ctx=Load()))])
- classast.Assert(test,msg)¶
An assertion.
testholds the condition, such as aComparenode.msgholds the failure message.>>>print(ast.dump(ast.parse('assert x,y'),indent=4))Module( body=[ Assert( test=Name(id='x', ctx=Load()), msg=Name(id='y', ctx=Load()))])
- classast.Delete(targets)¶
Represents a
delstatement.targetsis a list of nodes, such asName,AttributeorSubscriptnodes.>>>print(ast.dump(ast.parse('del x,y,z'),indent=4))Module( body=[ Delete( targets=[ Name(id='x', ctx=Del()), Name(id='y', ctx=Del()), Name(id='z', ctx=Del())])])
- classast.Pass¶
A
passstatement.>>>print(ast.dump(ast.parse('pass'),indent=4))Module( body=[ Pass()])
- classast.TypeAlias(name,type_params,value)¶
Atype alias created through the
typestatement.nameis the name of the alias,type_paramsis a list oftype parameters, andvalueis the value of thetype alias.>>>print(ast.dump(ast.parse('type Alias = int'),indent=4))Module( body=[ TypeAlias( name=Name(id='Alias', ctx=Store()), value=Name(id='int', ctx=Load()))])
Added in version 3.12.
Other statements which are only applicable inside functions or loops aredescribed in other sections.
Imports¶
- classast.Import(names)¶
An import statement.
namesis a list ofaliasnodes.>>>print(ast.dump(ast.parse('import x,y,z'),indent=4))Module( body=[ Import( names=[ alias(name='x'), alias(name='y'), alias(name='z')])])
- classast.ImportFrom(module,names,level)¶
Represents
fromximporty.moduleis a raw string of the ‘from’ name,without any leading dots, orNonefor statements such asfrom.importfoo.levelis an integer holding the level of the relative import (0 meansabsolute import).>>>print(ast.dump(ast.parse('from y import x,y,z'),indent=4))Module( body=[ ImportFrom( module='y', names=[ alias(name='x'), alias(name='y'), alias(name='z')], level=0)])
- classast.alias(name,asname)¶
Both parameters are raw strings of the names.
asnamecan beNoneifthe regular name is to be used.>>>print(ast.dump(ast.parse('from ..foo.bar import a as b, c'),indent=4))Module( body=[ ImportFrom( module='foo.bar', names=[ alias(name='a', asname='b'), alias(name='c')], level=2)])
Control flow¶
Note
Optional clauses such aselse are stored as an empty list if they’renot present.
- classast.If(test,body,orelse)¶
An
ifstatement.testholds a single node, such as aComparenode.bodyandorelseeach hold a list of nodes.elifclauses don’t have a special representation in the AST, but ratherappear as extraIfnodes within theorelsesection of theprevious one.>>>print(ast.dump(ast.parse("""...if x:... ......elif y:... ......else:... ......"""),indent=4))Module( body=[ If( test=Name(id='x', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ If( test=Name(id='y', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])])])
- classast.For(target,iter,body,orelse,type_comment)¶
A
forloop.targetholds the variable(s) the loop assigns to, as asingleName,Tuple,List,AttributeorSubscriptnode.iterholds the item to be looped over, againas a single node.bodyandorelsecontain lists of nodes to execute.Those inorelseare executed if the loop finishes normally, rather thanvia abreakstatement.- type_comment¶
type_commentis an optional string with the type annotation as a comment.
>>>print(ast.dump(ast.parse("""...for x in y:... ......else:... ......"""),indent=4))Module( body=[ For( target=Name(id='x', ctx=Store()), iter=Name(id='y', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])])
- classast.While(test,body,orelse)¶
A
whileloop.testholds the condition, such as aComparenode.>>>print(ast.dump(ast.parse("""...while x:... ......else:... ......"""),indent=4))Module( body=[ While( test=Name(id='x', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])])
- classast.Break¶
- classast.Continue¶
The
breakandcontinuestatements.>>>print(ast.dump(ast.parse("""\...for a in b:... if a > 5:... break... else:... continue......"""),indent=4))Module( body=[ For( target=Name(id='a', ctx=Store()), iter=Name(id='b', ctx=Load()), body=[ If( test=Compare( left=Name(id='a', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=5)]), body=[ Break()], orelse=[ Continue()])])])
- classast.Try(body,handlers,orelse,finalbody)¶
tryblocks. All attributes are list of nodes to execute, except forhandlers, which is a list ofExceptHandlernodes.>>>print(ast.dump(ast.parse("""...try:... ......except Exception:... ......except OtherException as e:... ......else:... ......finally:... ......"""),indent=4))Module( body=[ Try( body=[ Expr( value=Constant(value=Ellipsis))], handlers=[ ExceptHandler( type=Name(id='Exception', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))]), ExceptHandler( type=Name(id='OtherException', ctx=Load()), name='e', body=[ Expr( value=Constant(value=Ellipsis))])], orelse=[ Expr( value=Constant(value=Ellipsis))], finalbody=[ Expr( value=Constant(value=Ellipsis))])])
- classast.TryStar(body,handlers,orelse,finalbody)¶
tryblocks which are followed byexcept*clauses. The attributes are thesame as forTrybut theExceptHandlernodes inhandlersare interpreted asexcept*blocks rather thenexcept.>>>print(ast.dump(ast.parse("""...try:... ......except* Exception:... ......"""),indent=4))Module( body=[ TryStar( body=[ Expr( value=Constant(value=Ellipsis))], handlers=[ ExceptHandler( type=Name(id='Exception', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.11.
- classast.ExceptHandler(type,name,body)¶
A single
exceptclause.typeis the exception type it will match,typically aNamenode (orNonefor a catch-allexcept:clause).nameis a raw string for the name to hold the exception, orNoneifthe clause doesn’t haveasfoo.bodyis a list of nodes.>>>print(ast.dump(ast.parse("""\...try:... a + 1...except TypeError:... pass..."""),indent=4))Module( body=[ Try( body=[ Expr( value=BinOp( left=Name(id='a', ctx=Load()), op=Add(), right=Constant(value=1)))], handlers=[ ExceptHandler( type=Name(id='TypeError', ctx=Load()), body=[ Pass()])])])
- classast.With(items,body,type_comment)¶
A
withblock.itemsis a list ofwithitemnodes representingthe context managers, andbodyis the indented block inside the context.- type_comment¶
type_commentis an optional string with the type annotation as a comment.
- classast.withitem(context_expr,optional_vars)¶
A single context manager in a
withblock.context_expris the contextmanager, often aCallnode.optional_varsis aName,TupleorListfor theasfoopart, orNoneif thatisn’t used.>>>print(ast.dump(ast.parse("""\...with a as b, c as d:... something(b, d)..."""),indent=4))Module( body=[ With( items=[ withitem( context_expr=Name(id='a', ctx=Load()), optional_vars=Name(id='b', ctx=Store())), withitem( context_expr=Name(id='c', ctx=Load()), optional_vars=Name(id='d', ctx=Store()))], body=[ Expr( value=Call( func=Name(id='something', ctx=Load()), args=[ Name(id='b', ctx=Load()), Name(id='d', ctx=Load())]))])])
Pattern matching¶
- classast.Match(subject,cases)¶
A
matchstatement.subjectholds the subject of the match (the objectthat is being matched against the cases) andcasescontains an iterable ofmatch_casenodes with the different cases.Added in version 3.10.
- classast.match_case(pattern,guard,body)¶
A single case pattern in a
matchstatement.patterncontains thematch pattern that the subject will be matched against. Note that theASTnodes produced for patterns differ from those produced forexpressions, even when they share the same syntax.The
guardattribute contains an expression that will be evaluated ifthe pattern matches the subject.bodycontains a list of nodes to execute if the pattern matches andthe result of evaluating the guard expression is true.>>>print(ast.dump(ast.parse("""...match x:... case [x] if x>0:... ...... case tuple():... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSequence( patterns=[ MatchAs(name='x')]), guard=Compare( left=Name(id='x', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=0)]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchClass( cls=Name(id='tuple', ctx=Load())), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchValue(value)¶
A match literal or value pattern that compares by equality.
valueisan expression node. Permitted value nodes are restricted as described inthe match statement documentation. This pattern succeeds if the matchsubject is equal to the evaluated value.>>>print(ast.dump(ast.parse("""...match x:... case "Relevant":... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchValue( value=Constant(value='Relevant')), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchSingleton(value)¶
A match literal pattern that compares by identity.
valueis thesingleton to be compared against:None,True, orFalse. Thispattern succeeds if the match subject is the given constant.>>>print(ast.dump(ast.parse("""...match x:... case None:... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSingleton(value=None), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchSequence(patterns)¶
A match sequence pattern.
patternscontains the patterns to be matchedagainst the subject elements if the subject is a sequence. Matches a variablelength sequence if one of the subpatterns is aMatchStarnode, otherwisematches a fixed length sequence.>>>print(ast.dump(ast.parse("""...match x:... case [1, 2]:... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSequence( patterns=[ MatchValue( value=Constant(value=1)), MatchValue( value=Constant(value=2))]), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchStar(name)¶
Matches the rest of the sequence in a variable length match sequence pattern.If
nameis notNone, a list containing the remaining sequenceelements is bound to that name if the overall sequence pattern is successful.>>>print(ast.dump(ast.parse("""...match x:... case [1, 2, *rest]:... ...... case [*_]:... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSequence( patterns=[ MatchValue( value=Constant(value=1)), MatchValue( value=Constant(value=2)), MatchStar(name='rest')]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchSequence( patterns=[ MatchStar()]), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchMapping(keys,patterns,rest)¶
A match mapping pattern.
keysis a sequence of expression nodes.patternsis a corresponding sequence of pattern nodes.restis anoptional name that can be specified to capture the remaining mapping elements.Permitted key expressions are restricted as described in the match statementdocumentation.This pattern succeeds if the subject is a mapping, all evaluated keyexpressions are present in the mapping, and the value corresponding to eachkey matches the corresponding subpattern. If
restis notNone, a dictcontaining the remaining mapping elements is bound to that name if the overallmapping pattern is successful.>>>print(ast.dump(ast.parse("""...match x:... case {1: _, 2: _}:... ...... case {**rest}:... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchMapping( keys=[ Constant(value=1), Constant(value=2)], patterns=[ MatchAs(), MatchAs()]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchMapping(rest='rest'), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchClass(cls,patterns,kwd_attrs,kwd_patterns)¶
A match class pattern.
clsis an expression giving the nominal class tobe matched.patternsis a sequence of pattern nodes to be matched againstthe class defined sequence of pattern matching attributes.kwd_attrsis asequence of additional attributes to be matched (specified as keyword argumentsin the class pattern),kwd_patternsare the corresponding patterns(specified as keyword values in the class pattern).This pattern succeeds if the subject is an instance of the nominated class,all positional patterns match the corresponding class-defined attributes, andany specified keyword attributes match their corresponding pattern.
Note: classes may define a property that returns self in order to match apattern node against the instance being matched. Several builtin types arealso matched that way, as described in the match statement documentation.
>>>print(ast.dump(ast.parse("""...match x:... case Point2D(0, 0):... ...... case Point3D(x=0, y=0, z=0):... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchClass( cls=Name(id='Point2D', ctx=Load()), patterns=[ MatchValue( value=Constant(value=0)), MatchValue( value=Constant(value=0))]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchClass( cls=Name(id='Point3D', ctx=Load()), kwd_attrs=[ 'x', 'y', 'z'], kwd_patterns=[ MatchValue( value=Constant(value=0)), MatchValue( value=Constant(value=0)), MatchValue( value=Constant(value=0))]), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchAs(pattern,name)¶
A match “as-pattern”, capture pattern or wildcard pattern.
patterncontains the match pattern that the subject will be matched against.If the pattern isNone, the node represents a capture pattern (i.e abare name) and will always succeed.The
nameattribute contains the name that will be bound if the patternis successful. IfnameisNone,patternmust also beNoneand the node represents the wildcard pattern.>>>print(ast.dump(ast.parse("""...match x:... case [x] as y:... ...... case _:... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchAs( pattern=MatchSequence( patterns=[ MatchAs(name='x')]), name='y'), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchAs(), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchOr(patterns)¶
A match “or-pattern”. An or-pattern matches each of its subpatterns in turnto the subject, until one succeeds. The or-pattern is then deemed tosucceed. If none of the subpatterns succeed the or-pattern fails. The
patternsattribute contains a list of match pattern nodes that will bematched against the subject.>>>print(ast.dump(ast.parse("""...match x:... case [x] | (y):... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchOr( patterns=[ MatchSequence( patterns=[ MatchAs(name='x')]), MatchAs(name='y')]), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
Type annotations¶
- classast.TypeIgnore(lineno,tag)¶
A
#type:ignorecomment located atlineno.tag is the optional tag specified by the form#type:ignore<tag>.>>>print(ast.dump(ast.parse('x = 1 # type: ignore',type_comments=True),indent=4))Module( body=[ Assign( targets=[ Name(id='x', ctx=Store())], value=Constant(value=1))], type_ignores=[ TypeIgnore(lineno=1, tag='')])>>>print(ast.dump(ast.parse('x: bool = 1 # type: ignore[assignment]',type_comments=True),indent=4))Module( body=[ AnnAssign( target=Name(id='x', ctx=Store()), annotation=Name(id='bool', ctx=Load()), value=Constant(value=1), simple=1)], type_ignores=[ TypeIgnore(lineno=1, tag='[assignment]')])
Note
TypeIgnorenodes are not generated when thetype_comments parameteris set toFalse(default). Seeast.parse()for more details.Added in version 3.8.
Type parameters¶
Type parameters can exist on classes, functions, and typealiases.
- classast.TypeVar(name,bound,default_value)¶
A
typing.TypeVar.nameis the name of the type variable.boundis the bound or constraints, if any. Ifboundis aTuple,it represents constraints; otherwise it represents the bound.default_valueis the default value; if theTypeVarhas no default, thisattribute will be set toNone.>>>print(ast.dump(ast.parse("type Alias[T: int = bool] = list[T]"),indent=4))Module( body=[ TypeAlias( name=Name(id='Alias', ctx=Store()), type_params=[ TypeVar( name='T', bound=Name(id='int', ctx=Load()), default_value=Name(id='bool', ctx=Load()))], value=Subscript( value=Name(id='list', ctx=Load()), slice=Name(id='T', ctx=Load()), ctx=Load()))])
Added in version 3.12.
Changed in version 3.13:Added thedefault_value parameter.
- classast.ParamSpec(name,default_value)¶
A
typing.ParamSpec.nameis the name of the parameter specification.default_valueis the default value; if theParamSpechas no default,this attribute will be set toNone.>>>print(ast.dump(ast.parse("type Alias[**P = [int, str]] = Callable[P, int]"),indent=4))Module( body=[ TypeAlias( name=Name(id='Alias', ctx=Store()), type_params=[ ParamSpec( name='P', default_value=List( elts=[ Name(id='int', ctx=Load()), Name(id='str', ctx=Load())], ctx=Load()))], value=Subscript( value=Name(id='Callable', ctx=Load()), slice=Tuple( elts=[ Name(id='P', ctx=Load()), Name(id='int', ctx=Load())], ctx=Load()), ctx=Load()))])
Added in version 3.12.
Changed in version 3.13:Added thedefault_value parameter.
- classast.TypeVarTuple(name,default_value)¶
A
typing.TypeVarTuple.nameis the name of the type variable tuple.default_valueis the default value; if theTypeVarTuplehas nodefault, this attribute will be set toNone.>>>print(ast.dump(ast.parse("type Alias[*Ts = ()] = tuple[*Ts]"),indent=4))Module( body=[ TypeAlias( name=Name(id='Alias', ctx=Store()), type_params=[ TypeVarTuple( name='Ts', default_value=Tuple(ctx=Load()))], value=Subscript( value=Name(id='tuple', ctx=Load()), slice=Tuple( elts=[ Starred( value=Name(id='Ts', ctx=Load()), ctx=Load())], ctx=Load()), ctx=Load()))])
Added in version 3.12.
Changed in version 3.13:Added thedefault_value parameter.
Function and class definitions¶
- classast.FunctionDef(name,args,body,decorator_list,returns,type_comment,type_params)¶
A function definition.
nameis a raw string of the function name.argsis anargumentsnode.bodyis the list of nodes inside the function.decorator_listis the list of decorators to be applied, stored outermostfirst (i.e. the first in the list will be applied last).returnsis the return annotation.type_paramsis a list oftype parameters.
- type_comment¶
type_commentis an optional string with the type annotation as a comment.
Changed in version 3.12:Added
type_params.
- classast.Lambda(args,body)¶
lambdais a minimal function definition that can be used inside anexpression. UnlikeFunctionDef,bodyholds a single node.>>>print(ast.dump(ast.parse('lambda x,y: ...'),indent=4))Module( body=[ Expr( value=Lambda( args=arguments( args=[ arg(arg='x'), arg(arg='y')]), body=Constant(value=Ellipsis)))])
- classast.arguments(posonlyargs,args,vararg,kwonlyargs,kw_defaults,kwarg,defaults)¶
The arguments for a function.
posonlyargs,argsandkwonlyargsare lists ofargnodes.varargandkwargare singleargnodes, referring to the*args,**kwargsparameters.kw_defaultsis a list of default values for keyword-only arguments. Ifone isNone, the corresponding argument is required.defaultsis a list of default values for arguments that can be passedpositionally. If there are fewer defaults, they correspond to the last narguments.
- classast.arg(arg,annotation,type_comment)¶
A single argument in a list.
argis a raw string of the argumentname;annotationis its annotation, such as aNamenode.- type_comment¶
type_commentis an optional string with the type annotation as a comment
>>>print(ast.dump(ast.parse("""\...@decorator1...@decorator2...def f(a: 'annotation', b=1, c=2, *d, e, f=3, **g) -> 'return annotation':... pass..."""),indent=4))Module( body=[ FunctionDef( name='f', args=arguments( args=[ arg( arg='a', annotation=Constant(value='annotation')), arg(arg='b'), arg(arg='c')], vararg=arg(arg='d'), kwonlyargs=[ arg(arg='e'), arg(arg='f')], kw_defaults=[ None, Constant(value=3)], kwarg=arg(arg='g'), defaults=[ Constant(value=1), Constant(value=2)]), body=[ Pass()], decorator_list=[ Name(id='decorator1', ctx=Load()), Name(id='decorator2', ctx=Load())], returns=Constant(value='return annotation'))])
- classast.Return(value)¶
A
returnstatement.>>>print(ast.dump(ast.parse('return 4'),indent=4))Module( body=[ Return( value=Constant(value=4))])
- classast.Yield(value)¶
- classast.YieldFrom(value)¶
A
yieldoryieldfromexpression. Because these are expressions, theymust be wrapped in anExprnode if the value sent back is not used.>>>print(ast.dump(ast.parse('yield x'),indent=4))Module( body=[ Expr( value=Yield( value=Name(id='x', ctx=Load())))])>>>print(ast.dump(ast.parse('yield from x'),indent=4))Module( body=[ Expr( value=YieldFrom( value=Name(id='x', ctx=Load())))])
- classast.Global(names)¶
- classast.Nonlocal(names)¶
globalandnonlocalstatements.namesis a list of raw strings.>>>print(ast.dump(ast.parse('global x,y,z'),indent=4))Module( body=[ Global( names=[ 'x', 'y', 'z'])])>>>print(ast.dump(ast.parse('nonlocal x,y,z'),indent=4))Module( body=[ Nonlocal( names=[ 'x', 'y', 'z'])])
- classast.ClassDef(name,bases,keywords,body,decorator_list,type_params)¶
A class definition.
nameis a raw string for the class namebasesis a list of nodes for explicitly specified base classes.keywordsis a list ofkeywordnodes, principally for ‘metaclass’.Other keywords will be passed to the metaclass, as perPEP 3115.bodyis a list of nodes representing the code within the classdefinition.decorator_listis a list of nodes, as inFunctionDef.type_paramsis a list oftype parameters.
>>>print(ast.dump(ast.parse("""\...@decorator1...@decorator2...class Foo(base1, base2, metaclass=meta):... pass..."""),indent=4))Module( body=[ ClassDef( name='Foo', bases=[ Name(id='base1', ctx=Load()), Name(id='base2', ctx=Load())], keywords=[ keyword( arg='metaclass', value=Name(id='meta', ctx=Load()))], body=[ Pass()], decorator_list=[ Name(id='decorator1', ctx=Load()), Name(id='decorator2', ctx=Load())])])
Changed in version 3.12:Added
type_params.
Async and await¶
- classast.AsyncFunctionDef(name,args,body,decorator_list,returns,type_comment,type_params)¶
An
asyncdeffunction definition. Has the same fields asFunctionDef.Changed in version 3.12:Added
type_params.
- classast.Await(value)¶
An
awaitexpression.valueis what it waits for.Only valid in the body of anAsyncFunctionDef.
>>>print(ast.dump(ast.parse("""\...async def f():... await other_func()..."""),indent=4))Module( body=[ AsyncFunctionDef( name='f', args=arguments(), body=[ Expr( value=Await( value=Call( func=Name(id='other_func', ctx=Load()))))])])
- classast.AsyncFor(target,iter,body,orelse,type_comment)¶
- classast.AsyncWith(items,body,type_comment)¶
asyncforloops andasyncwithcontext managers. They have the samefields asForandWith, respectively. Only valid in thebody of anAsyncFunctionDef.
Note
When a string is parsed byast.parse(), operator nodes (subclassesofast.operator,ast.unaryop,ast.cmpop,ast.boolop andast.expr_context) on the returned treewill be singletons. Changes to one will be reflected in all otheroccurrences of the same value (for example,ast.Add).
ast helpers¶
Apart from the node classes, theast module defines these utility functionsand classes for traversing abstract syntax trees:
- ast.parse(source,filename='<unknown>',mode='exec',*,type_comments=False,feature_version=None,optimize=-1)¶
Parse the source into an AST node. Equivalent to
compile(source,filename,mode,flags=FLAGS_VALUE,optimize=optimize),whereFLAGS_VALUEisast.PyCF_ONLY_ASTifoptimize<=0andast.PyCF_OPTIMIZED_ASTotherwise.If
type_comments=Trueis given, the parser is modified to checkand return type comments as specified byPEP 484 andPEP 526.This is equivalent to addingast.PyCF_TYPE_COMMENTSto theflags passed tocompile(). This will report syntax errorsfor misplaced type comments. Without this flag, type comments willbe ignored, and thetype_commentfield on selected AST nodeswill always beNone. In addition, the locations of#type:ignorecomments will be returned as thetype_ignoresattribute ofModule(otherwise it is always an empty list).In addition, if
modeis'func_type', the input syntax ismodified to correspond toPEP 484 “signature type comments”,e.g.(str,int)->List[str].Setting
feature_versionto a tuple(major,minor)will result ina “best-effort” attempt to parse using that Python version’s grammar.For example, settingfeature_version=(3,9)will attempt to disallowparsing ofmatchstatements.Currentlymajormust equal to3. The lowest supported version is(3,7)(and this may increase in future Python versions);the highest issys.version_info[0:2]. “Best-effort” attempt means thereis no guarantee that the parse (or success of the parse) is the same aswhen run on the Python version corresponding tofeature_version.If source contains a null character (
\0),ValueErroris raised.Warning
Note that successfully parsing source code into an AST object doesn’tguarantee that the source code provided is valid Python code that canbe executed as the compilation step can raise further
SyntaxErrorexceptions. For instance, the sourcereturn42generates a validAST node for a return statement, but it cannot be compiled alone (it needsto be inside a function node).In particular,
ast.parse()won’t do any scoping checks, which thecompilation step does.Warning
It is possible to crash the Python interpreter with asufficiently large/complex string due to stack depth limitationsin Python’s AST compiler.
Changed in version 3.8:Added
type_comments,mode='func_type'andfeature_version.Changed in version 3.13:The minimum supported version for
feature_versionis now(3,7).Theoptimizeargument was added.
- ast.unparse(ast_obj)¶
Unparse an
ast.ASTobject and generate a string with codethat would produce an equivalentast.ASTobject if parsedback withast.parse().Warning
The produced code string will not necessarily be equal to the originalcode that generated the
ast.ASTobject (without any compileroptimizations, such as constant tuples/frozensets).Warning
Trying to unparse a highly complex expression would result with
RecursionError.Added in version 3.9.
- ast.literal_eval(node_or_string)¶
Evaluate an expression node or a string containing only a Python literal orcontainer display. The string or node provided may only consist of thefollowing Python literal structures: strings, bytes, numbers, tuples, lists,dicts, sets, booleans,
NoneandEllipsis.This can be used for evaluating strings containing Python values without theneed to parse the values oneself. It is not capable of evaluatingarbitrarily complex expressions, for example involving operators orindexing.
This function had been documented as “safe” in the past without definingwhat that meant. That was misleading. This is specifically designed not toexecute Python code, unlike the more general
eval(). There is nonamespace, no name lookups, or ability to call out. But it is not free fromattack: A relatively small input can lead to memory exhaustion or to C stackexhaustion, crashing the process. There is also the possibility forexcessive CPU consumption denial of service on some inputs. Calling it onuntrusted data is thus not recommended.Warning
It is possible to crash the Python interpreter due to stack depthlimitations in Python’s AST compiler.
It can raise
ValueError,TypeError,SyntaxError,MemoryErrorandRecursionErrordepending on the malformedinput.Changed in version 3.2:Now allows bytes and set literals.
Changed in version 3.9:Now supports creating empty sets with
'set()'.Changed in version 3.10:For string inputs, leading spaces and tabs are now stripped.
- ast.get_docstring(node,clean=True)¶
Return the docstring of the givennode (which must be a
FunctionDef,AsyncFunctionDef,ClassDef,orModulenode), orNoneif it has no docstring.Ifclean is true, clean up the docstring’s indentation withinspect.cleandoc().Changed in version 3.5:
AsyncFunctionDefis now supported.
- ast.get_source_segment(source,node,*,padded=False)¶
Get source code segment of thesource that generatednode.If some location information (
lineno,end_lineno,col_offset, orend_col_offset) is missing, returnNone.Ifpadded is
True, the first line of a multi-line statement willbe padded with spaces to match its original position.Added in version 3.8.
- ast.fix_missing_locations(node)¶
When you compile a node tree with
compile(), the compiler expectslinenoandcol_offsetattributes for every node that supportsthem. This is rather tedious to fill in for generated nodes, so this helperadds these attributes recursively where not already set, by setting them tothe values of the parent node. It works recursively starting atnode.
- ast.increment_lineno(node,n=1)¶
Increment the line number and end line number of each node in the treestarting atnode byn. This is useful to “move code” to a differentlocation in a file.
- ast.copy_location(new_node,old_node)¶
Copy source location (
lineno,col_offset,end_lineno,andend_col_offset) fromold_node tonew_node if possible,and returnnew_node.
- ast.iter_fields(node)¶
Yield a tuple of
(fieldname,value)for each field innode._fieldsthat is present onnode.
- ast.iter_child_nodes(node)¶
Yield all direct child nodes ofnode, that is, all fields that are nodesand all items of fields that are lists of nodes.
- ast.walk(node)¶
Recursively yield all descendant nodes in the tree starting atnode(includingnode itself), in no specified order. This is useful if you onlywant to modify nodes in place and don’t care about the context.
- classast.NodeVisitor¶
A node visitor base class that walks the abstract syntax tree and calls avisitor function for every node found. This function may return a valuewhich is forwarded by the
visit()method.This class is meant to be subclassed, with the subclass adding visitormethods.
- visit(node)¶
Visit a node. The default implementation calls the method called
self.visit_classnamewhereclassname is the name of the nodeclass, orgeneric_visit()if that method doesn’t exist.
- generic_visit(node)¶
This visitor calls
visit()on all children of the node.Note that child nodes of nodes that have a custom visitor method won’t bevisited unless the visitor calls
generic_visit()or visits themitself.
- visit_Constant(node)¶
Handles all constant nodes.
Don’t use the
NodeVisitorif you want to apply changes to nodesduring traversal. For this a special visitor exists(NodeTransformer) that allows modifications.Deprecated since version 3.8:Methods
visit_Num(),visit_Str(),visit_Bytes(),visit_NameConstant()andvisit_Ellipsis()are deprecatednow and will not be called in future Python versions. Add thevisit_Constant()method to handle all constant nodes.
- classast.NodeTransformer¶
A
NodeVisitorsubclass that walks the abstract syntax tree andallows modification of nodes.The
NodeTransformerwill walk the AST and use the return value ofthe visitor methods to replace or remove the old node. If the return valueof the visitor method isNone, the node will be removed from itslocation, otherwise it is replaced with the return value. The return valuemay be the original node in which case no replacement takes place.Here is an example transformer that rewrites all occurrences of name lookups(
foo) todata['foo']:classRewriteName(NodeTransformer):defvisit_Name(self,node):returnSubscript(value=Name(id='data',ctx=Load()),slice=Constant(value=node.id),ctx=node.ctx)
Keep in mind that if the node you’re operating on has child nodes you musteither transform the child nodes yourself or call the
generic_visit()method for the node first.For nodes that were part of a collection of statements (that applies to allstatement nodes), the visitor may also return a list of nodes rather thanjust a single node.
If
NodeTransformerintroduces new nodes (that weren’t part oforiginal tree) without giving them location information (such aslineno),fix_missing_locations()should be called withthe new sub-tree to recalculate the location information:tree=ast.parse('foo',mode='eval')new_tree=fix_missing_locations(RewriteName().visit(tree))
Usually you use the transformer like this:
node=YourTransformer().visit(node)
- ast.dump(node,annotate_fields=True,include_attributes=False,*,indent=None,show_empty=False)¶
Return a formatted dump of the tree innode. This is mainly useful fordebugging purposes. Ifannotate_fields is true (by default),the returned string will show the names and the values for fields.Ifannotate_fields is false, the result string will be more compact byomitting unambiguous field names. Attributes such as linenumbers and column offsets are not dumped by default. If this is wanted,include_attributes can be set to true.
Ifindent is a non-negative integer or string, then the tree will bepretty-printed with that indent level. An indent levelof 0, negative, or
""will only insert newlines.None(the default)selects the single line representation. Using a positive integer indentindents that many spaces per level. Ifindent is a string (such as"\t"),that string is used to indent each level.Ifshow_empty is false (the default), optional empty lists will beomitted from the output.Optional
Nonevalues are always omitted.Changed in version 3.9:Added theindent option.
Changed in version 3.13:Added theshow_empty option.
>>>print(ast.dump(ast.parse("""\...async def f():... await other_func()..."""),indent=4,show_empty=True))Module( body=[ AsyncFunctionDef( name='f', args=arguments( posonlyargs=[], args=[], kwonlyargs=[], kw_defaults=[], defaults=[]), body=[ Expr( value=Await( value=Call( func=Name(id='other_func', ctx=Load()), args=[], keywords=[])))], decorator_list=[], type_params=[])], type_ignores=[])
Compiler flags¶
The following flags may be passed tocompile() in order to changeeffects on the compilation of a program:
- ast.PyCF_ALLOW_TOP_LEVEL_AWAIT¶
Enables support for top-level
await,asyncfor,asyncwithand async comprehensions.Added in version 3.8.
- ast.PyCF_ONLY_AST¶
Generates and returns an abstract syntax tree instead of returning acompiled code object.
- ast.PyCF_OPTIMIZED_AST¶
The returned AST is optimized according to theoptimize argumentin
compile()orast.parse().Added in version 3.13.
- ast.PyCF_TYPE_COMMENTS¶
Enables support forPEP 484 andPEP 526 style type comments(
#type:<type>,#type:ignore<stuff>).Added in version 3.8.
- ast.compare(a,b,/,*,compare_attributes=False)¶
Recursively compares two ASTs.
compare_attributes affects whether AST attributes are consideredin the comparison. Ifcompare_attributes is
False(default), thenattributes are ignored. Otherwise they must all be equal. Thisoption is useful to check whether the ASTs are structurally equal butdiffer in whitespace or similar details. Attributes include line numbersand column offsets.Added in version 3.14.
Command-line usage¶
Added in version 3.9.
Theast module can be executed as a script from the command line.It is as simple as:
python-mast[-m<mode>][-a][infile]
The following options are accepted:
- -h,--help¶
Show the help message and exit.
- --no-type-comments¶
Don’t parse type comments.
- -a,--include-attributes¶
Include attributes such as line numbers and column offsets.
- --feature-version<version>¶
Python version in the format 3.x (for example, 3.10). Defaults to thecurrent version of the interpreter.
Added in version 3.14.
- -O<level>¶
- --optimize<level>¶
Optimization level for parser. Defaults to no optimization.
Added in version 3.14.
- --show-empty¶
Show empty lists and fields that are
None. Defaults to not showing emptyobjects.Added in version 3.14.
Ifinfile is specified its contents are parsed to AST and dumpedto stdout. Otherwise, the content is read from stdin.
See also
Green Tree Snakes, an externaldocumentation resource, has good details on working with Python ASTs.
ASTTokensannotates Python ASTs with the positions of tokens and text in the sourcecode that generated them. This is helpful for tools that make source codetransformations.
leoAst.pyunifies thetoken-based and parse-tree-based views of python programs by insertingtwo-way links between tokens and ast nodes.
LibCST parses code as a Concrete SyntaxTree that looks like an ast tree and keeps all formatting details. It’suseful for building automated refactoring (codemod) applications andlinters.
Parso is a Python parser that supportserror recovery and round-trip parsing for different Python versions (inmultiple Python versions). Parso is also able to list multiple syntax errorsin your Python file.