typing — Support for type hints¶
New in version 3.5.
Source code:Lib/typing.py
Note
The Python runtime does not enforce function and variable type annotations.They can be used by third party tools such astype checkers,IDEs, linters, etc.
This module provides runtime support for type hints. For the originalspecification of the typing system, seePEP 484. For a simplifiedintroduction to type hints, seePEP 483.
The function below takes and returns a string and is annotated as follows:
defgreeting(name:str)->str:return'Hello '+name
In the functiongreeting, the argumentname is expected to be of typestr and the return typestr. Subtypes are accepted asarguments.
New features are frequently added to thetyping module.Thetyping_extensions packageprovides backports of these new features to older versions of Python.
For a summary of deprecated features and a deprecation timeline, please seeDeprecation Timeline of Major Features.
See also
- “Typing cheat sheet”
A quick overview of type hints (hosted at the mypy docs)
- “Type System Reference” section ofthe mypy docs
The Python typing system is standardised via PEPs, so this referenceshould broadly apply to most Python type checkers. (Some parts may stillbe specific to mypy.)
- “Static Typing with Python”
Type-checker-agnostic documentation written by the community detailingtype system features, useful typing related tools and typing bestpractices.
Relevant PEPs¶
Since the initial introduction of type hints inPEP 484 andPEP 483, anumber of PEPs have modified and enhanced Python’s framework for typeannotations:
The full list of PEPs
- PEP 544: Protocols: Structural subtyping (static duck typing)
Introducing
Protocoland the@runtime_checkabledecorator
- PEP 585: Type Hinting Generics In Standard Collections
Introducing
types.GenericAliasand the ability to use standardlibrary classes asgeneric types
- PEP 604: Allow writing union types as
X|Y Introducing
types.UnionTypeand the ability to usethe binary-or operator|to signify aunion of types
- PEP 604: Allow writing union types as
- PEP 612: Parameter Specification Variables
Introducing
ParamSpecandConcatenate
- PEP 646: Variadic Generics
Introducing
TypeVarTuple
- PEP 655: Marking individual TypedDict items as required or potentially missing
Introducing
RequiredandNotRequired
- PEP 675: Arbitrary Literal String Type
Introducing
LiteralString
- PEP 681: Data Class Transforms
Introducing the
@dataclass_transformdecorator
Type aliases¶
A type alias is defined by assigning the type to the alias. In this example,Vector andlist[float] will be treated as interchangeable synonyms:
Vector=list[float]defscale(scalar:float,vector:Vector)->Vector:return[scalar*numfornuminvector]# passes type checking; a list of floats qualifies as a Vector.new_vector=scale(2.0,[1.0,-4.2,5.4])
Type aliases are useful for simplifying complex type signatures. For example:
fromcollections.abcimportSequenceConnectionOptions=dict[str,str]Address=tuple[str,int]Server=tuple[Address,ConnectionOptions]defbroadcast_message(message:str,servers:Sequence[Server])->None:...# The static type checker will treat the previous type signature as# being exactly equivalent to this one.defbroadcast_message(message:str,servers:Sequence[tuple[tuple[str,int],dict[str,str]]])->None:...
Type aliases may be marked withTypeAlias to make it explicit thatthe statement is a type alias declaration, not a normal variable assignment:
fromtypingimportTypeAliasVector:TypeAlias=list[float]
NewType¶
Use theNewType helper to create distinct types:
fromtypingimportNewTypeUserId=NewType('UserId',int)some_id=UserId(524313)
The static type checker will treat the new type as if it were a subclassof the original type. This is useful in helping catch logical errors:
defget_user_name(user_id:UserId)->str:...# passes type checkinguser_a=get_user_name(UserId(42351))# fails type checking; an int is not a UserIduser_b=get_user_name(-1)
You may still perform allint operations on a variable of typeUserId,but the result will always be of typeint. This lets you pass in aUserId wherever anint might be expected, but will prevent you fromaccidentally creating aUserId in an invalid way:
# 'output' is of type 'int', not 'UserId'output=UserId(23413)+UserId(54341)
Note that these checks are enforced only by the static type checker. At runtime,the statementDerived=NewType('Derived',Base) will makeDerived acallable that immediately returns whatever parameter you pass it. That meansthe expressionDerived(some_value) does not create a new class or introducemuch overhead beyond that of a regular function call.
More precisely, the expressionsome_valueisDerived(some_value) is alwaystrue at runtime.
It is invalid to create a subtype ofDerived:
fromtypingimportNewTypeUserId=NewType('UserId',int)# Fails at runtime and does not pass type checkingclassAdminUserId(UserId):pass
However, it is possible to create aNewType based on a ‘derived’NewType:
fromtypingimportNewTypeUserId=NewType('UserId',int)ProUserId=NewType('ProUserId',UserId)
and typechecking forProUserId will work as expected.
SeePEP 484 for more details.
Note
Recall that the use of a type alias declares two types to beequivalent toone another. DoingAlias=Original will make the static type checkertreatAlias as beingexactly equivalent toOriginal in all cases.This is useful when you want to simplify complex type signatures.
In contrast,NewType declares one type to be asubtype of another.DoingDerived=NewType('Derived',Original) will make the static typechecker treatDerived as asubclass ofOriginal, which means avalue of typeOriginal cannot be used in places where a value of typeDerived is expected. This is useful when you want to prevent logicerrors with minimal runtime cost.
New in version 3.5.2.
Changed in version 3.10:NewType is now a class rather than a function. As a result, there issome additional runtime cost when callingNewType over a regularfunction.
Changed in version 3.11:The performance of callingNewType has been restored to its level inPython 3.9.
Annotating callable objects¶
Functions – or othercallable objects – can be annotated usingcollections.abc.Callable ortyping.Callable.Callable[[int],str] signifies a function that takes a single parameterof typeint and returns astr.
For example:
fromcollections.abcimportCallable,Awaitabledeffeeder(get_next_item:Callable[[],str])->None:...# Bodydefasync_query(on_success:Callable[[int],None],on_error:Callable[[int,Exception],None])->None:...# Bodyasyncdefon_update(value:str)->None:...# Bodycallback:Callable[[str],Awaitable[None]]=on_update
The subscription syntax must always be used with exactly two values: theargument list and the return type. The argument list must be a list of types,aParamSpec,Concatenate, or an ellipsis. The return type mustbe a single type.
If a literal ellipsis... is given as the argument list, it indicates thata callable with any arbitrary parameter list would be acceptable:
defconcat(x:str,y:str)->str:returnx+yx:Callable[...,str]x=str# OKx=concat# Also OK
Callable cannot express complex signatures such as functions that take avariadic number of arguments,overloaded functions, orfunctions that have keyword-only parameters. However, these signatures can beexpressed by defining aProtocol class with a__call__() method:
fromcollections.abcimportIterablefromtypingimportProtocolclassCombiner(Protocol):def__call__(self,*vals:bytes,maxlen:int|None=None)->list[bytes]:...defbatch_proc(data:Iterable[bytes],cb_results:Combiner)->bytes:foritemindata:...defgood_cb(*vals:bytes,maxlen:int|None=None)->list[bytes]:...defbad_cb(*vals:bytes,maxitems:int|None)->list[bytes]:...batch_proc([],good_cb)# OKbatch_proc([],bad_cb)# Error! Argument 2 has incompatible type because of# different name and kind in the callback
Callables which take other callables as arguments may indicate that theirparameter types are dependent on each other usingParamSpec.Additionally, if that callable adds or removes arguments from othercallables, theConcatenate operator may be used. Theytake the formCallable[ParamSpecVariable,ReturnType] andCallable[Concatenate[Arg1Type,Arg2Type,...,ParamSpecVariable],ReturnType]respectively.
Changed in version 3.10:Callable now supportsParamSpec andConcatenate.SeePEP 612 for more details.
See also
The documentation forParamSpec andConcatenate providesexamples of usage inCallable.
Generics¶
Since type information about objects kept in containers cannot be staticallyinferred in a generic way, many container classes in the standard library supportsubscription to denote the expected types of container elements.
fromcollections.abcimportMapping,SequenceclassEmployee:...# Sequence[Employee] indicates that all elements in the sequence# must be instances of "Employee".# Mapping[str, str] indicates that all keys and all values in the mapping# must be strings.defnotify_by_email(employees:Sequence[Employee],overrides:Mapping[str,str])->None:...
Generics can be parameterized by using a factory available in typingcalledTypeVar.
fromcollections.abcimportSequencefromtypingimportTypeVarT=TypeVar('T')# Declare type variable "T"deffirst(l:Sequence[T])->T:# Function is generic over the TypeVar "T"returnl[0]
Annotating tuples¶
For most containers in Python, the typing system assumes that all elements inthe container will be of the same type. For example:
fromcollections.abcimportMapping# Type checker will infer that all elements in ``x`` are meant to be intsx:list[int]=[]# Type checker error: ``list`` only accepts a single type argument:y:list[int,str]=[1,'foo']# Type checker will infer that all keys in ``z`` are meant to be strings,# and that all values in ``z`` are meant to be either strings or intsz:Mapping[str,str|int]={}
list only accepts one type argument, so a type checker would emit anerror on they assignment above. Similarly,Mapping only accepts two type arguments: the firstindicates the type of the keys, and the second indicates the type of thevalues.
Unlike most other Python containers, however, it is common in idiomatic Pythoncode for tuples to have elements which are not all of the same type. For thisreason, tuples are special-cased in Python’s typing system.tupleacceptsany number of type arguments:
# OK: ``x`` is assigned to a tuple of length 1 where the sole element is an intx:tuple[int]=(5,)# OK: ``y`` is assigned to a tuple of length 2;# element 1 is an int, element 2 is a stry:tuple[int,str]=(5,"foo")# Error: the type annotation indicates a tuple of length 1,# but ``z`` has been assigned to a tuple of length 3z:tuple[int]=(1,2,3)
To denote a tuple which could be ofany length, and in which all elements areof the same typeT, usetuple[T,...]. To denote an empty tuple, usetuple[()]. Using plaintuple as an annotation is equivalent to usingtuple[Any,...]:
x:tuple[int,...]=(1,2)# These reassignments are OK: ``tuple[int, ...]`` indicates x can be of any lengthx=(1,2,3)x=()# This reassignment is an error: all elements in ``x`` must be intsx=("foo","bar")# ``y`` can only ever be assigned to an empty tupley:tuple[()]=()z:tuple=("foo","bar")# These reassignments are OK: plain ``tuple`` is equivalent to ``tuple[Any, ...]``z=(1,2,3)z=()
The type of class objects¶
A variable annotated withC may accept a value of typeC. Incontrast, a variable annotated withtype[C] (ortyping.Type[C]) may accept values that are classesthemselves – specifically, it will accept theclass object ofC. Forexample:
a=3# Has type ``int``b=int# Has type ``type[int]``c=type(a)# Also has type ``type[int]``
Note thattype[C] is covariant:
classUser:...classProUser(User):...classTeamUser(User):...defmake_new_user(user_class:type[User])->User:# ...returnuser_class()make_new_user(User)# OKmake_new_user(ProUser)# Also OK: ``type[ProUser]`` is a subtype of ``type[User]``make_new_user(TeamUser)# Still finemake_new_user(User())# Error: expected ``type[User]`` but got ``User``make_new_user(int)# Error: ``type[int]`` is not a subtype of ``type[User]``
The only legal parameters fortype are classes,Any,type variables, and unions of any of these types.For example:
defnew_non_team_user(user_class:type[BasicUser|ProUser]):...new_non_team_user(BasicUser)# OKnew_non_team_user(ProUser)# OKnew_non_team_user(TeamUser)# Error: ``type[TeamUser]`` is not a subtype# of ``type[BasicUser | ProUser]``new_non_team_user(User)# Also an error
type[Any] is equivalent totype, which is the root of Python’smetaclass hierarchy.
User-defined generic types¶
A user-defined class can be defined as a generic class.
fromtypingimportTypeVar,GenericfromloggingimportLoggerT=TypeVar('T')classLoggedVar(Generic[T]):def__init__(self,value:T,name:str,logger:Logger)->None:self.name=nameself.logger=loggerself.value=valuedefset(self,new:T)->None:self.log('Set '+repr(self.value))self.value=newdefget(self)->T:self.log('Get '+repr(self.value))returnself.valuedeflog(self,message:str)->None:self.logger.info('%s:%s',self.name,message)
Generic[T] as a base class defines that the classLoggedVar takes asingle type parameterT . This also makesT valid as a type within theclass body.
TheGeneric base class defines__class_getitem__() sothatLoggedVar[T] is valid as a type:
fromcollections.abcimportIterabledefzero_all_vars(vars:Iterable[LoggedVar[int]])->None:forvarinvars:var.set(0)
A generic type can have any number of type variables. All varieties ofTypeVar are permissible as parameters for a generic type:
fromtypingimportTypeVar,Generic,SequenceT=TypeVar('T',contravariant=True)B=TypeVar('B',bound=Sequence[bytes],covariant=True)S=TypeVar('S',int,str)classWeirdTrio(Generic[T,B,S]):...
Each type variable argument toGeneric must be distinct.This is thus invalid:
fromtypingimportTypeVar,Generic...T=TypeVar('T')classPair(Generic[T,T]):# INVALID...
You can use multiple inheritance withGeneric:
fromcollections.abcimportSizedfromtypingimportTypeVar,GenericT=TypeVar('T')classLinkedList(Sized,Generic[T]):...
When inheriting from generic classes, some type parameters could be fixed:
fromcollections.abcimportMappingfromtypingimportTypeVarT=TypeVar('T')classMyDict(Mapping[str,T]):...
In this caseMyDict has a single parameter,T.
Using a generic class without specifying type parameters assumesAny for each position. In the following example,MyIterable isnot generic but implicitly inherits fromIterable[Any]:
fromcollections.abcimportIterableclassMyIterable(Iterable):# Same as Iterable[Any]...
User-defined generic type aliases are also supported. Examples:
fromcollections.abcimportIterablefromtypingimportTypeVarS=TypeVar('S')Response=Iterable[S]|int# Return type here is same as Iterable[str] | intdefresponse(query:str)->Response[str]:...T=TypeVar('T',int,float,complex)Vec=Iterable[tuple[T,T]]definproduct(v:Vec[T])->T:# Same as Iterable[tuple[T, T]]returnsum(x*yforx,yinv)
Changed in version 3.7:Generic no longer has a custom metaclass.
User-defined generics for parameter expressions are also supported via parameterspecification variables in the formGeneric[P]. The behavior is consistentwith type variables’ described above as parameter specification variables aretreated by the typing module as a specialized type variable. The one exceptionto this is that a list of types can be used to substitute aParamSpec:
>>>fromtypingimportGeneric,ParamSpec,TypeVar>>>T=TypeVar('T')>>>P=ParamSpec('P')>>>classZ(Generic[T,P]):......>>>Z[int,[dict,float]]__main__.Z[int, (<class 'dict'>, <class 'float'>)]
Furthermore, a generic with only one parameter specification variable will acceptparameter lists in the formsX[[Type1,Type2,...]] and alsoX[Type1,Type2,...] for aesthetic reasons. Internally, the latter is convertedto the former, so the following are equivalent:
>>>classX(Generic[P]):......>>>X[int,str]__main__.X[(<class 'int'>, <class 'str'>)]>>>X[[int,str]]__main__.X[(<class 'int'>, <class 'str'>)]
Note that generics withParamSpec may not have correct__parameters__ after substitution in some cases because theyare intended primarily for static type checking.
Changed in version 3.10:Generic can now be parameterized over parameter expressions.SeeParamSpec andPEP 612 for more details.
A user-defined generic class can have ABCs as base classes without a metaclassconflict. Generic metaclasses are not supported. The outcome of parameterizinggenerics is cached, and most types in the typing module arehashable andcomparable for equality.
TheAny type¶
A special kind of type isAny. A static type checker will treatevery type as being compatible withAny andAny as beingcompatible with every type.
This means that it is possible to perform any operation or method call on avalue of typeAny and assign it to any variable:
fromtypingimportAnya:Any=Nonea=[]# OKa=2# OKs:str=''s=a# OKdeffoo(item:Any)->int:# Passes type checking; 'item' could be any type,# and that type might have a 'bar' methoditem.bar()...
Notice that no type checking is performed when assigning a value of typeAny to a more precise type. For example, the static type checker didnot report an error when assigninga tos even thoughs wasdeclared to be of typestr and receives anint value atruntime!
Furthermore, all functions without a return type or parameter types willimplicitly default to usingAny:
deflegacy_parser(text):...returndata# A static type checker will treat the above# as having the same signature as:deflegacy_parser(text:Any)->Any:...returndata
This behavior allowsAny to be used as anescape hatch when youneed to mix dynamically and statically typed code.
Contrast the behavior ofAny with the behavior ofobject.Similar toAny, every type is a subtype ofobject. However,unlikeAny, the reverse is not true:object isnot asubtype of every other type.
That means when the type of a value isobject, a type checker willreject almost all operations on it, and assigning it to a variable (or usingit as a return value) of a more specialized type is a type error. For example:
defhash_a(item:object)->int:# Fails type checking; an object does not have a 'magic' method.item.magic()...defhash_b(item:Any)->int:# Passes type checkingitem.magic()...# Passes type checking, since ints and strs are subclasses of objecthash_a(42)hash_a("foo")# Passes type checking, since Any is compatible with all typeshash_b(42)hash_b("foo")
Useobject to indicate that a value could be any type in a typesafemanner. UseAny to indicate that a value is dynamically typed.
Nominal vs structural subtyping¶
InitiallyPEP 484 defined the Python static type system as usingnominal subtyping. This means that a classA is allowed wherea classB is expected if and only ifA is a subclass ofB.
This requirement previously also applied to abstract base classes, such asIterable. The problem with this approach is that a class hadto be explicitly marked to support them, which is unpythonic and unlikewhat one would normally do in idiomatic dynamically typed Python code.For example, this conforms toPEP 484:
fromcollections.abcimportSized,Iterable,IteratorclassBucket(Sized,Iterable[int]):...def__len__(self)->int:...def__iter__(self)->Iterator[int]:...
PEP 544 allows to solve this problem by allowing users to writethe above code without explicit base classes in the class definition,allowingBucket to be implicitly considered a subtype of bothSizedandIterable[int] by static type checkers. This is known asstructural subtyping (or static duck-typing):
fromcollections.abcimportIterator,IterableclassBucket:# Note: no base classes...def__len__(self)->int:...def__iter__(self)->Iterator[int]:...defcollect(items:Iterable[int])->int:...result=collect(Bucket())# Passes type check
Moreover, by subclassing a special classProtocol, a usercan define new custom protocols to fully enjoy structural subtyping(see examples below).
Module contents¶
Thetyping module defines the following classes, functions and decorators.
Special typing primitives¶
Special types¶
These can be used as types in annotations. They do not support subscriptionusing[].
- typing.Any¶
Special type indicating an unconstrained type.
Changed in version 3.11:
Anycan now be used as a base class. This can be useful foravoiding type checker errors with classes that can duck type anywhere orare highly dynamic.
- typing.AnyStr¶
Definition:
AnyStr=TypeVar('AnyStr',str,bytes)
AnyStris meant to be used for functions that may acceptstrorbytesarguments but cannot allow the two to mix.For example:
defconcat(a:AnyStr,b:AnyStr)->AnyStr:returna+bconcat("foo","bar")# OK, output has type 'str'concat(b"foo",b"bar")# OK, output has type 'bytes'concat("foo",b"bar")# Error, cannot mix str and bytes
Note that, despite its name,
AnyStrhas nothing to do with theAnytype, nor does it mean “any string”. In particular,AnyStrandstr|bytesare different from each other and have different usecases:# Invalid use of AnyStr:# The type variable is used only once in the function signature,# so cannot be "solved" by the type checkerdefgreet_bad(cond:bool)->AnyStr:return"hi there!"ifcondelseb"greetings!"# The better way of annotating this function:defgreet_proper(cond:bool)->str|bytes:return"hi there!"ifcondelseb"greetings!"
- typing.LiteralString¶
Special type that includes only literal strings.
Any stringliteral is compatible with
LiteralString, as is anotherLiteralString. However, an object typed as juststris not.A string created by composingLiteralString-typed objectsis also acceptable as aLiteralString.Example:
defrun_query(sql:LiteralString)->None:...defcaller(arbitrary_string:str,literal_string:LiteralString)->None:run_query("SELECT * FROM students")# OKrun_query(literal_string)# OKrun_query("SELECT * FROM "+literal_string)# OKrun_query(arbitrary_string)# type checker errorrun_query(# type checker errorf"SELECT * FROM students WHERE name ={arbitrary_string}")
LiteralStringis useful for sensitive APIs where arbitrary user-generatedstrings could generate problems. For example, the two cases abovethat generate type checker errors could be vulnerable to an SQLinjection attack.SeePEP 675 for more details.
New in version 3.11.
- typing.Never¶
Thebottom type,a type that has no members.
This can be used to define a function that should never becalled, or a function that never returns:
fromtypingimportNeverdefnever_call_me(arg:Never)->None:passdefint_or_str(arg:int|str)->None:never_call_me(arg)# type checker errormatcharg:caseint():print("It's an int")casestr():print("It's a str")case_:never_call_me(arg)# OK, arg is of type Never
New in version 3.11:On older Python versions,
NoReturnmay be used to express thesame concept.Neverwas added to make the intended meaning more explicit.
- typing.NoReturn¶
Special type indicating that a function never returns.
For example:
fromtypingimportNoReturndefstop()->NoReturn:raiseRuntimeError('no way')
NoReturncan also be used as abottom type, a type thathas no values. Starting in Python 3.11, theNevertype shouldbe used for this concept instead. Type checkers should treat the twoequivalently.New in version 3.6.2.
- typing.Self¶
Special type to represent the current enclosed class.
For example:
fromtypingimportSelf,reveal_typeclassFoo:defreturn_self(self)->Self:...returnselfclassSubclassOfFoo(Foo):passreveal_type(Foo().return_self())# Revealed type is "Foo"reveal_type(SubclassOfFoo().return_self())# Revealed type is "SubclassOfFoo"
This annotation is semantically equivalent to the following,albeit in a more succinct fashion:
fromtypingimportTypeVarSelf=TypeVar("Self",bound="Foo")classFoo:defreturn_self(self:Self)->Self:...returnself
In general, if something returns
self, as in the above examples, youshould useSelfas the return annotation. IfFoo.return_selfwasannotated as returning"Foo", then the type checker would infer theobject returned fromSubclassOfFoo.return_selfas being of typeFoorather thanSubclassOfFoo.Other common use cases include:
classmethods that are used as alternative constructors and return instancesof theclsparameter.Annotating an
__enter__()method which returns self.
You should not use
Selfas the return annotation if the method is notguaranteed to return an instance of a subclass when the class issubclassed:classEggs:# Self would be an incorrect return annotation here,# as the object returned is always an instance of Eggs,# even in subclassesdefreturns_eggs(self)->"Eggs":returnEggs()
SeePEP 673 for more details.
New in version 3.11.
- typing.TypeAlias¶
Special annotation for explicitly declaring atype alias.
For example:
fromtypingimportTypeAliasFactors:TypeAlias=list[int]
TypeAliasis particularly useful for annotatingaliases that make use of forward references, as it can be hard for typecheckers to distinguish these from normal variable assignments:fromtypingimportGeneric,TypeAlias,TypeVarT=TypeVar("T")# "Box" does not exist yet,# so we have to use quotes for the forward reference.# Using ``TypeAlias`` tells the type checker that this is a type alias declaration,# not a variable assignment to a string.BoxOfStrings:TypeAlias="Box[str]"classBox(Generic[T]):@classmethoddefmake_box_of_strings(cls)->BoxOfStrings:...
SeePEP 613 for more details.
New in version 3.10.
Special forms¶
These can be used as types in annotations. They all support subscription using[], but each has a unique syntax.
- typing.Union¶
Union type;
Union[X,Y]is equivalent toX|Yand means either X or Y.To define a union, use e.g.
Union[int,str]or the shorthandint|str. Using that shorthand is recommended. Details:The arguments must be types and there must be at least one.
Unions of unions are flattened, e.g.:
Union[Union[int,str],float]==Union[int,str,float]
Unions of a single argument vanish, e.g.:
Union[int]==int# The constructor actually returns int
Redundant arguments are skipped, e.g.:
Union[int,str,int]==Union[int,str]==int|str
When comparing unions, the argument order is ignored, e.g.:
Union[int,str]==Union[str,int]
You cannot subclass or instantiate a
Union.You cannot write
Union[X][Y].
Changed in version 3.7:Don’t remove explicit subclasses from unions at runtime.
Changed in version 3.10:Unions can now be written as
X|Y. Seeunion type expressions.
- typing.Optional¶
Optional[X]is equivalent toX|None(orUnion[X,None]).Note that this is not the same concept as an optional argument,which is one that has a default. An optional argument with adefault does not require the
Optionalqualifier on its typeannotation just because it is optional. For example:deffoo(arg:int=0)->None:...
On the other hand, if an explicit value of
Noneis allowed, theuse ofOptionalis appropriate, whether the argument is optionalor not. For example:deffoo(arg:Optional[int]=None)->None:...
Changed in version 3.10:Optional can now be written as
X|None. Seeunion type expressions.
- typing.Concatenate¶
Special form for annotating higher-order functions.
Concatenatecan be used in conjunction withCallable andParamSpecto annotate a higher-order callable which adds, removes,or transforms parameters of anothercallable. Usage is in the formConcatenate[Arg1Type,Arg2Type,...,ParamSpecVariable].Concatenateis currently only valid when used as the first argument to aCallable.The last parameter toConcatenatemust be aParamSpecorellipsis (...).For example, to annotate a decorator
with_lockwhich provides athreading.Lockto the decorated function,Concatenatecan beused to indicate thatwith_lockexpects a callable which takes in aLockas the first argument, and returns a callable with a different typesignature. In this case, theParamSpecindicates that the returnedcallable’s parameter types are dependent on the parameter types of thecallable being passed in:fromcollections.abcimportCallablefromthreadingimportLockfromtypingimportConcatenate,ParamSpec,TypeVarP=ParamSpec('P')R=TypeVar('R')# Use this lock to ensure that only one thread is executing a function# at any time.my_lock=Lock()defwith_lock(f:Callable[Concatenate[Lock,P],R])->Callable[P,R]:'''A type-safe decorator which provides a lock.'''definner(*args:P.args,**kwargs:P.kwargs)->R:# Provide the lock as the first argument.returnf(my_lock,*args,**kwargs)returninner@with_lockdefsum_threadsafe(lock:Lock,numbers:list[float])->float:'''Add a list of numbers together in a thread-safe manner.'''withlock:returnsum(numbers)# We don't need to pass in the lock ourselves thanks to the decorator.sum_threadsafe([1.1,2.2,3.3])
New in version 3.10.
See also
PEP 612 – Parameter Specification Variables (the PEP which introduced
ParamSpecandConcatenate)
- typing.Literal¶
Special typing form to define “literal types”.
Literalcan be used to indicate to type checkers that theannotated object has a value equivalent to one of theprovided literals.For example:
defvalidate_simple(data:Any)->Literal[True]:# always returns True...Mode:TypeAlias=Literal['r','rb','w','wb']defopen_helper(file:str,mode:Mode)->str:...open_helper('/some/path','r')# Passes type checkopen_helper('/other/path','typo')# Error in type checker
Literal[...]cannot be subclassed. At runtime, an arbitrary valueis allowed as type argument toLiteral[...], but type checkers mayimpose restrictions. SeePEP 586 for more details about literal types.New in version 3.8.
- typing.ClassVar¶
Special type construct to mark class variables.
As introduced inPEP 526, a variable annotation wrapped in ClassVarindicates that a given attribute is intended to be used as a class variableand should not be set on instances of that class. Usage:
classStarship:stats:ClassVar[dict[str,int]]={}# class variabledamage:int=10# instance variable
ClassVaraccepts only types and cannot be further subscribed.ClassVaris not a class itself, and should notbe used withisinstance()orissubclass().ClassVardoes not change Python runtime behavior, butit can be used by third-party type checkers. For example, a type checkermight flag the following code as an error:enterprise_d=Starship(3000)enterprise_d.stats={}# Error, setting class variable on instanceStarship.stats={}# This is OK
New in version 3.5.3.
- typing.Final¶
Special typing construct to indicate final names to type checkers.
Final names cannot be reassigned in any scope. Final names declared in classscopes cannot be overridden in subclasses.
For example:
MAX_SIZE:Final=9000MAX_SIZE+=1# Error reported by type checkerclassConnection:TIMEOUT:Final[int]=10classFastConnector(Connection):TIMEOUT=1# Error reported by type checker
There is no runtime checking of these properties. SeePEP 591 formore details.
New in version 3.8.
- typing.Required¶
Special typing construct to mark a
TypedDictkey as required.This is mainly useful for
total=FalseTypedDicts. SeeTypedDictandPEP 655 for more details.New in version 3.11.
- typing.NotRequired¶
Special typing construct to mark a
TypedDictkey as potentiallymissing.See
TypedDictandPEP 655 for more details.New in version 3.11.
- typing.Annotated¶
Special typing form to add context-specific metadata to an annotation.
Add metadata
xto a given typeTby using the annotationAnnotated[T,x]. Metadata added usingAnnotatedcan be used bystatic analysis tools or at runtime. At runtime, the metadata is storedin a__metadata__attribute.If a library or tool encounters an annotation
Annotated[T,x]and hasno special logic for the metadata, it should ignore the metadata and simplytreat the annotation asT. As such,Annotatedcan be useful for codethat wants to use annotations for purposes outside Python’s static typingsystem.Using
Annotated[T,x]as an annotation still allows for statictypechecking ofT, as type checkers will simply ignore the metadatax.In this way,Annotateddiffers from the@no_type_checkdecorator, which can also be used foradding annotations outside the scope of the typing system, butcompletely disables typechecking for a function or class.The responsibility of how to interpret the metadatalies with the tool or library encountering an
Annotatedannotation. A tool or library encountering anAnnotatedtypecan scan through the metadata elements to determine if they are of interest(e.g., usingisinstance()).- Annotated[<type>,<metadata>]
Here is an example of how you might use
Annotatedto add metadata totype annotations if you were doing range analysis:@dataclassclassValueRange:lo:inthi:intT1=Annotated[int,ValueRange(-10,5)]T2=Annotated[T1,ValueRange(-20,3)]
Details of the syntax:
The first argument to
Annotatedmust be a valid typeMultiple metadata elements can be supplied (
Annotatedsupports variadicarguments):@dataclassclassctype:kind:strAnnotated[int,ValueRange(3,10),ctype("char")]
It is up to the tool consuming the annotations to decide whether theclient is allowed to add multiple metadata elements to one annotation and how tomerge those annotations.
Annotatedmust be subscripted with at least two arguments (Annotated[int]is not valid)The order of the metadata elements is preserved and matters for equalitychecks:
assertAnnotated[int,ValueRange(3,10),ctype("char")]!=Annotated[int,ctype("char"),ValueRange(3,10)]
Nested
Annotatedtypes are flattened. The order of the metadata elementsstarts with the innermost annotation:assertAnnotated[Annotated[int,ValueRange(3,10)],ctype("char")]==Annotated[int,ValueRange(3,10),ctype("char")]
Duplicated metadata elements are not removed:
assertAnnotated[int,ValueRange(3,10)]!=Annotated[int,ValueRange(3,10),ValueRange(3,10)]
Annotatedcan be used with nested and generic aliases:@dataclassclassMaxLen:value:intT=TypeVar("T")Vec:TypeAlias=Annotated[list[tuple[T,T]],MaxLen(10)]assertVec[int]==Annotated[list[tuple[int,int]],MaxLen(10)]
Annotatedcannot be used with an unpackedTypeVarTuple:Variadic:TypeAlias=Annotated[*Ts,Ann1]# NOT valid
This would be equivalent to:
Annotated[T1,T2,T3,...,Ann1]
where
T1,T2, etc. areTypeVars. This would beinvalid: only one type should be passed to Annotated.By default,
get_type_hints()strips the metadata from annotations.Passinclude_extras=Trueto have the metadata preserved:>>>fromtypingimportAnnotated,get_type_hints>>>deffunc(x:Annotated[int,"metadata"])->None:pass...>>>get_type_hints(func){'x': <class 'int'>, 'return': <class 'NoneType'>}>>>get_type_hints(func,include_extras=True){'x': typing.Annotated[int, 'metadata'], 'return': <class 'NoneType'>}
At runtime, the metadata associated with an
Annotatedtype can beretrieved via the__metadata__attribute:>>>fromtypingimportAnnotated>>>X=Annotated[int,"very","important","metadata"]>>>Xtyping.Annotated[int, 'very', 'important', 'metadata']>>>X.__metadata__('very', 'important', 'metadata')
See also
- PEP 593 - Flexible function and variable annotations
The PEP introducing
Annotatedto the standard library.
New in version 3.9.
- typing.TypeGuard¶
Special typing construct for marking user-defined type guard functions.
TypeGuardcan be used to annotate the return type of a user-definedtype guard function.TypeGuardonly accepts a single type argument.At runtime, functions marked this way should return a boolean.TypeGuardaims to benefittype narrowing – a technique used by statictype checkers to determine a more precise type of an expression within aprogram’s code flow. Usually type narrowing is done by analyzingconditional code flow and applying the narrowing to a block of code. Theconditional expression here is sometimes referred to as a “type guard”:defis_str(val:str|float):# "isinstance" type guardifisinstance(val,str):# Type of ``val`` is narrowed to ``str``...else:# Else, type of ``val`` is narrowed to ``float``....
Sometimes it would be convenient to use a user-defined boolean functionas a type guard. Such a function should use
TypeGuard[...]as itsreturn type to alert static type checkers to this intention.Using
->TypeGuardtells the static type checker that for a givenfunction:The return value is a boolean.
If the return value is
True, the type of its argumentis the type insideTypeGuard.
For example:
defis_str_list(val:list[object])->TypeGuard[list[str]]:'''Determines whether all objects in the list are strings'''returnall(isinstance(x,str)forxinval)deffunc1(val:list[object]):ifis_str_list(val):# Type of ``val`` is narrowed to ``list[str]``.print(" ".join(val))else:# Type of ``val`` remains as ``list[object]``.print("Not a list of strings!")
If
is_str_listis a class or instance method, then the type inTypeGuardmaps to the type of the second parameter afterclsorself.In short, the form
deffoo(arg:TypeA)->TypeGuard[TypeB]:...,means that iffoo(arg)returnsTrue, thenargnarrows fromTypeAtoTypeB.Note
TypeBneed not be a narrower form ofTypeA– it can even be awider form. The main reason is to allow for things likenarrowinglist[object]tolist[str]even though the latteris not a subtype of the former, sincelistis invariant.The responsibility of writing type-safe type guards is left to the user.TypeGuardalso works with type variables. SeePEP 647 for more details.New in version 3.10.
- typing.Unpack¶
Typing operator to conceptually mark an object as having been unpacked.
For example, using the unpack operator
*on atype variable tuple is equivalent to usingUnpackto mark the type variable tuple as having been unpacked:Ts=TypeVarTuple('Ts')tup:tuple[*Ts]# Effectively does:tup:tuple[Unpack[Ts]]
In fact,
Unpackcan be used interchangeably with*in the contextoftyping.TypeVarTupleandbuiltins.tupletypes. You might seeUnpackbeing usedexplicitly in older versions of Python, where*couldn’t be used incertain places:# In older versions of Python, TypeVarTuple and Unpack# are located in the `typing_extensions` backports package.fromtyping_extensionsimportTypeVarTuple,UnpackTs=TypeVarTuple('Ts')tup:tuple[*Ts]# Syntax error on Python <= 3.10!tup:tuple[Unpack[Ts]]# Semantically equivalent, and backwards-compatible
New in version 3.11.
Building generic types¶
The following classes should not be used directly as annotations.Their intended purpose is to be building blocksfor creating generic types.
- classtyping.Generic¶
Abstract base class for generic types.
A generic type is typically declared by inheriting from aninstantiation of this class with one or more type variables.For example, a generic mapping type might be defined as:
classMapping(Generic[KT,VT]):def__getitem__(self,key:KT)->VT:...# Etc.
This class can then be used as follows:
X=TypeVar('X')Y=TypeVar('Y')deflookup_name(mapping:Mapping[X,Y],key:X,default:Y)->Y:try:returnmapping[key]exceptKeyError:returndefault
- classtyping.TypeVar(name,*constraints,bound=None,covariant=False,contravariant=False)¶
Type variable.
Usage:
T=TypeVar('T')# Can be anythingS=TypeVar('S',bound=str)# Can be any subtype of strA=TypeVar('A',str,bytes)# Must be exactly str or bytes
Type variables exist primarily for the benefit of static typecheckers. They serve as the parameters for generic types as wellas for generic function and type alias definitions.See
Genericfor moreinformation on generic types. Generic functions work as follows:defrepeat(x:T,n:int)->Sequence[T]:"""Return a list containing n references to x."""return[x]*ndefprint_capitalized(x:S)->S:"""Print x capitalized, and return x."""print(x.capitalize())returnxdefconcatenate(x:A,y:A)->A:"""Add two strings or bytes objects together."""returnx+y
Note that type variables can bebound,constrained, or neither, butcannot be both boundand constrained.
Type variables may be marked covariant or contravariant by passing
covariant=Trueorcontravariant=True. SeePEP 484 for moredetails. By default, type variables are invariant.Bound type variables and constrained type variables have differentsemantics in several important ways. Using abound type variable meansthat the
TypeVarwill be solved using the most specific type possible:x=print_capitalized('a string')reveal_type(x)# revealed type is strclassStringSubclass(str):passy=print_capitalized(StringSubclass('another string'))reveal_type(y)# revealed type is StringSubclassz=print_capitalized(45)# error: int is not a subtype of str
Type variables can be bound to concrete types, abstract types (ABCs orprotocols), and even unions of types:
U=TypeVar('U',bound=str|bytes)# Can be any subtype of the union str|bytesV=TypeVar('V',bound=SupportsAbs)# Can be anything with an __abs__ method
Using aconstrained type variable, however, means that the
TypeVarcan only ever be solved as being exactly one of the constraints given:a=concatenate('one','two')reveal_type(a)# revealed type is strb=concatenate(StringSubclass('one'),StringSubclass('two'))reveal_type(b)# revealed type is str, despite StringSubclass being passed inc=concatenate('one',b'two')# error: type variable 'A' can be either str or bytes in a function call, but not both
At runtime,
isinstance(x,T)will raiseTypeError.- __name__¶
The name of the type variable.
- __covariant__¶
Whether the type var has been marked as covariant.
- __contravariant__¶
Whether the type var has been marked as contravariant.
- __bound__¶
The bound of the type variable, if any.
- __constraints__¶
A tuple containing the constraints of the type variable, if any.
- classtyping.TypeVarTuple(name)¶
Type variable tuple. A specialized form oftype variablethat enablesvariadic generics.
Usage:
T=TypeVar("T")Ts=TypeVarTuple("Ts")defmove_first_element_to_last(tup:tuple[T,*Ts])->tuple[*Ts,T]:return(*tup[1:],tup[0])
A normal type variable enables parameterization with a single type. A typevariable tuple, in contrast, allows parameterization with anarbitrary number of types by acting like anarbitrary number of typevariables wrapped in a tuple. For example:
# T is bound to int, Ts is bound to ()# Return value is (1,), which has type tuple[int]move_first_element_to_last(tup=(1,))# T is bound to int, Ts is bound to (str,)# Return value is ('spam', 1), which has type tuple[str, int]move_first_element_to_last(tup=(1,'spam'))# T is bound to int, Ts is bound to (str, float)# Return value is ('spam', 3.0, 1), which has type tuple[str, float, int]move_first_element_to_last(tup=(1,'spam',3.0))# This fails to type check (and fails at runtime)# because tuple[()] is not compatible with tuple[T, *Ts]# (at least one element is required)move_first_element_to_last(tup=())
Note the use of the unpacking operator
*intuple[T,*Ts].Conceptually, you can think ofTsas a tuple of type variables(T1,T2,...).tuple[T,*Ts]would then becometuple[T,*(T1,T2,...)], which is equivalent totuple[T,T1,T2,...]. (Note that in older versions of Python, you mightsee this written usingUnpackinstead, asUnpack[Ts].)Type variable tuples mustalways be unpacked. This helps distinguish typevariable tuples from normal type variables:
x:Ts# Not validx:tuple[Ts]# Not validx:tuple[*Ts]# The correct way to do it
Type variable tuples can be used in the same contexts as normal typevariables. For example, in class definitions, arguments, and return types:
Shape=TypeVarTuple("Shape")classArray(Generic[*Shape]):def__getitem__(self,key:tuple[*Shape])->float:...def__abs__(self)->"Array[*Shape]":...defget_shape(self)->tuple[*Shape]:...
Type variable tuples can be happily combined with normal type variables:
DType=TypeVar('DType')Shape=TypeVarTuple('Shape')classArray(Generic[DType,*Shape]):# This is finepassclassArray2(Generic[*Shape,DType]):# This would also be finepassclassHeight:...classWidth:...float_array_1d:Array[float,Height]=Array()# Totally fineint_array_2d:Array[int,Height,Width]=Array()# Yup, fine too
However, note that at most one type variable tuple may appear in a singlelist of type arguments or type parameters:
x:tuple[*Ts,*Ts]# Not validclassArray(Generic[*Shape,*Shape]):# Not validpass
Finally, an unpacked type variable tuple can be used as the type annotationof
*args:defcall_soon(callback:Callable[[*Ts],None],*args:*Ts)->None:...callback(*args)
In contrast to non-unpacked annotations of
*args- e.g.*args:int,which would specify thatall arguments areint-*args:*Tsenables reference to the types of theindividual arguments in*args.Here, this allows us to ensure the types of the*argspassedtocall_soonmatch the types of the (positional) arguments ofcallback.SeePEP 646 for more details on type variable tuples.
- __name__¶
The name of the type variable tuple.
New in version 3.11.
- classtyping.ParamSpec(name,*,bound=None,covariant=False,contravariant=False)¶
Parameter specification variable. A specialized version oftype variables.
Usage:
P=ParamSpec('P')
Parameter specification variables exist primarily for the benefit of statictype checkers. They are used to forward the parameter types of onecallable to another callable – a pattern commonly found in higher orderfunctions and decorators. They are only valid when used in
Concatenate,or as the first argument toCallable, or as parameters for user-definedGenerics. SeeGenericfor more information on generic types.For example, to add basic logging to a function, one can create a decorator
add_loggingto log function calls. The parameter specification variabletells the type checker that the callable passed into the decorator and thenew callable returned by it have inter-dependent type parameters:fromcollections.abcimportCallablefromtypingimportTypeVar,ParamSpecimportloggingT=TypeVar('T')P=ParamSpec('P')defadd_logging(f:Callable[P,T])->Callable[P,T]:'''A type-safe decorator to add logging to a function.'''definner(*args:P.args,**kwargs:P.kwargs)->T:logging.info(f'{f.__name__} was called')returnf(*args,**kwargs)returninner@add_loggingdefadd_two(x:float,y:float)->float:'''Add two numbers together.'''returnx+y
Without
ParamSpec, the simplest way to annotate this previously was touse aTypeVarwith boundCallable[...,Any]. However thiscauses two problems:The type checker can’t type check the
innerfunction because*argsand**kwargshave to be typedAny.cast()may be required in the body of theadd_loggingdecorator when returning theinnerfunction, or the static typechecker must be told to ignore thereturninner.
- args¶
- kwargs¶
Since
ParamSpeccaptures both positional and keyword parameters,P.argsandP.kwargscan be used to split aParamSpecinto itscomponents.P.argsrepresents the tuple of positional parameters in agiven call and should only be used to annotate*args.P.kwargsrepresents the mapping of keyword parameters to their values in a given call,and should be only be used to annotate**kwargs. Bothattributes require the annotated parameter to be in scope. At runtime,P.argsandP.kwargsare instances respectively ofParamSpecArgsandParamSpecKwargs.
- __name__¶
The name of the parameter specification.
Parameter specification variables created with
covariant=Trueorcontravariant=Truecan be used to declare covariant or contravariantgeneric types. Theboundargument is also accepted, similar toTypeVar. However the actual semantics of these keywords are yet tobe decided.New in version 3.10.
Note
Only parameter specification variables defined in global scope canbe pickled.
See also
PEP 612 – Parameter Specification Variables (the PEP which introduced
ParamSpecandConcatenate)
- typing.ParamSpecArgs¶
- typing.ParamSpecKwargs¶
Arguments and keyword arguments attributes of a
ParamSpec. TheP.argsattribute of aParamSpecis an instance ofParamSpecArgs,andP.kwargsis an instance ofParamSpecKwargs. They are intendedfor runtime introspection and have no special meaning to static type checkers.Calling
get_origin()on either of these objects will return theoriginalParamSpec:>>>fromtypingimportParamSpec,get_origin>>>P=ParamSpec("P")>>>get_origin(P.args)isPTrue>>>get_origin(P.kwargs)isPTrue
New in version 3.10.
Other special directives¶
These functions and classes should not be used directly as annotations.Their intended purpose is to be building blocks for creating and declaringtypes.
- classtyping.NamedTuple¶
Typed version of
collections.namedtuple().Usage:
classEmployee(NamedTuple):name:strid:int
This is equivalent to:
Employee=collections.namedtuple('Employee',['name','id'])
To give a field a default value, you can assign to it in the class body:
classEmployee(NamedTuple):name:strid:int=3employee=Employee('Guido')assertemployee.id==3
Fields with a default value must come after any fields without a default.
The resulting class has an extra attribute
__annotations__giving adict that maps the field names to the field types. (The field names are inthe_fieldsattribute and the default values are in the_field_defaultsattribute, both of which are part of thenamedtuple()API.)NamedTuplesubclasses can also have docstrings and methods:classEmployee(NamedTuple):"""Represents an employee."""name:strid:int=3def__repr__(self)->str:returnf'<Employee{self.name}, id={self.id}>'
NamedTuplesubclasses can be generic:classGroup(NamedTuple,Generic[T]):key:Tgroup:list[T]
Backward-compatible usage:
Employee=NamedTuple('Employee',[('name',str),('id',int)])
Changed in version 3.6:Added support forPEP 526 variable annotation syntax.
Changed in version 3.6.1:Added support for default values, methods, and docstrings.
Changed in version 3.8:The
_field_typesand__annotations__attributes arenow regular dictionaries instead of instances ofOrderedDict.Changed in version 3.9:Removed the
_field_typesattribute in favor of the morestandard__annotations__attribute which has the same information.Changed in version 3.11:Added support for generic namedtuples.
- classtyping.NewType(name,tp)¶
Helper class to create low-overheaddistinct types.
A
NewTypeis considered a distinct type by a typechecker. At runtime,however, calling aNewTypereturns its argument unchanged.Usage:
UserId=NewType('UserId',int)# Declare the NewType "UserId"first_user=UserId(1)# "UserId" returns the argument unchanged at runtime
- __module__¶
The module in which the new type is defined.
- __name__¶
The name of the new type.
- __supertype__¶
The type that the new type is based on.
New in version 3.5.2.
Changed in version 3.10:
NewTypeis now a class rather than a function.
- classtyping.Protocol(Generic)¶
Base class for protocol classes.
Protocol classes are defined like this:
classProto(Protocol):defmeth(self)->int:...
Such classes are primarily used with static type checkers that recognizestructural subtyping (static duck-typing), for example:
classC:defmeth(self)->int:return0deffunc(x:Proto)->int:returnx.meth()func(C())# Passes static type check
SeePEP 544 for more details. Protocol classes decorated with
runtime_checkable()(described later) act as simple-minded runtimeprotocols that check only the presence of given attributes, ignoring theirtype signatures.Protocol classes can be generic, for example:
T=TypeVar("T")classGenProto(Protocol[T]):defmeth(self)->T:...
New in version 3.8.
- @typing.runtime_checkable¶
Mark a protocol class as a runtime protocol.
Such a protocol can be used with
isinstance()andissubclass().This raisesTypeErrorwhen applied to a non-protocol class. Thisallows a simple-minded structural check, very similar to “one trick ponies”incollections.abcsuch asIterable. For example:@runtime_checkableclassClosable(Protocol):defclose(self):...assertisinstance(open('/some/file'),Closable)@runtime_checkableclassNamed(Protocol):name:strimportthreadingassertisinstance(threading.Thread(name='Bob'),Named)
Note
runtime_checkable()will check only the presence of the requiredmethods or attributes, not their type signatures or types.For example,ssl.SSLObjectis a class, therefore it passes anissubclass()check againstCallable. However, thessl.SSLObject.__init__method exists only to raise aTypeErrorwith a more informative message, therefore makingit impossible to call (instantiate)ssl.SSLObject.Note
An
isinstance()check against a runtime-checkable protocol can besurprisingly slow compared to anisinstance()check againsta non-protocol class. Consider using alternative idioms such ashasattr()calls for structural checks in performance-sensitivecode.New in version 3.8.
- classtyping.TypedDict(dict)¶
Special construct to add type hints to a dictionary.At runtime it is a plain
dict.TypedDictdeclares a dictionary type that expects all of itsinstances to have a certain set of keys, where each key isassociated with a value of a consistent type. This expectationis not checked at runtime but is only enforced by type checkers.Usage:classPoint2D(TypedDict):x:inty:intlabel:stra:Point2D={'x':1,'y':2,'label':'good'}# OKb:Point2D={'z':3,'label':'bad'}# Fails type checkassertPoint2D(x=1,y=2,label='first')==dict(x=1,y=2,label='first')
To allow using this feature with older versions of Python that do notsupportPEP 526,
TypedDictsupports two additional equivalentsyntactic forms:Using a literal
dictas the second argument:Point2D=TypedDict('Point2D',{'x':int,'y':int,'label':str})
Using keyword arguments:
Point2D=TypedDict('Point2D',x=int,y=int,label=str)
Deprecated since version 3.11, will be removed in version 3.13:The keyword-argument syntax is deprecated in 3.11 and will be removedin 3.13. It may also be unsupported by static type checkers.
The functional syntax should also be used when any of the keys are not valididentifiers, for example because they are keywords or contain hyphens.Example:
# raises SyntaxErrorclassPoint2D(TypedDict):in:int# 'in' is a keywordx-y:int# name with hyphens# OK, functional syntaxPoint2D=TypedDict('Point2D',{'in':int,'x-y':int})
By default, all keys must be present in a
TypedDict. It is possible tomark individual keys as non-required usingNotRequired:classPoint2D(TypedDict):x:inty:intlabel:NotRequired[str]# Alternative syntaxPoint2D=TypedDict('Point2D',{'x':int,'y':int,'label':NotRequired[str]})
This means that a
Point2DTypedDictcan have thelabelkey omitted.It is also possible to mark all keys as non-required by defaultby specifying a totality of
False:classPoint2D(TypedDict,total=False):x:inty:int# Alternative syntaxPoint2D=TypedDict('Point2D',{'x':int,'y':int},total=False)
This means that a
Point2DTypedDictcan have any of the keysomitted. A type checker is only expected to support a literalFalseorTrueas the value of thetotalargument.Trueis the default,and makes all items defined in the class body required.Individual keys of a
total=FalseTypedDictcan be marked asrequired usingRequired:classPoint2D(TypedDict,total=False):x:Required[int]y:Required[int]label:str# Alternative syntaxPoint2D=TypedDict('Point2D',{'x':Required[int],'y':Required[int],'label':str},total=False)
It is possible for a
TypedDicttype to inherit from one or more otherTypedDicttypesusing the class-based syntax.Usage:classPoint3D(Point2D):z:int
Point3Dhas three items:x,yandz. It is equivalent to thisdefinition:classPoint3D(TypedDict):x:inty:intz:int
A
TypedDictcannot inherit from a non-TypedDictclass,except forGeneric. For example:classX(TypedDict):x:intclassY(TypedDict):y:intclassZ(object):pass# A non-TypedDict classclassXY(X,Y):pass# OKclassXZ(X,Z):pass# raises TypeError
A
TypedDictcan be generic:T=TypeVar("T")classGroup(TypedDict,Generic[T]):key:Tgroup:list[T]
A
TypedDictcan be introspected via annotations dicts(seeAnnotations Best Practices for more information on annotations best practices),__total__,__required_keys__, and__optional_keys__.- __total__¶
Point2D.__total__gives the value of thetotalargument.Example:>>>fromtypingimportTypedDict>>>classPoint2D(TypedDict):pass>>>Point2D.__total__True>>>classPoint2D(TypedDict,total=False):pass>>>Point2D.__total__False>>>classPoint3D(Point2D):pass>>>Point3D.__total__True
This attribute reflectsonly the value of the
totalargumentto the currentTypedDictclass, not whether the class is semanticallytotal. For example, aTypedDictwith__total__set to True mayhave keys marked withNotRequired, or it may inherit from anotherTypedDictwithtotal=False. Therefore, it is generally better to use__required_keys__and__optional_keys__for introspection.
- __required_keys__¶
New in version 3.9.
- __optional_keys__¶
Point2D.__required_keys__andPoint2D.__optional_keys__returnfrozensetobjects containing required and non-required keys, respectively.Keys marked with
Requiredwill always appear in__required_keys__and keys marked withNotRequiredwill always appear in__optional_keys__.For backwards compatibility with Python 3.10 and below,it is also possible to use inheritance to declare both required andnon-required keys in the same
TypedDict. This is done by declaring aTypedDictwith one value for thetotalargument and theninheriting from it in anotherTypedDictwith a different value fortotal:>>>classPoint2D(TypedDict,total=False):...x:int...y:int...>>>classPoint3D(Point2D):...z:int...>>>Point3D.__required_keys__==frozenset({'z'})True>>>Point3D.__optional_keys__==frozenset({'x','y'})True
New in version 3.9.
Note
If
from__future__importannotationsis used or if annotationsare given as strings, annotations are not evaluated when theTypedDictis defined. Therefore, the runtime introspection that__required_keys__and__optional_keys__rely on may not workproperly, and the values of the attributes may be incorrect.
SeePEP 589 for more examples and detailed rules of using
TypedDict.New in version 3.8.
Changed in version 3.11:Added support for marking individual keys as
RequiredorNotRequired.SeePEP 655.Changed in version 3.11:Added support for generic
TypedDicts.
Protocols¶
The following protocols are provided by the typing module. All are decoratedwith@runtime_checkable.
- classtyping.SupportsAbs¶
An ABC with one abstract method
__abs__that is covariantin its return type.
- classtyping.SupportsBytes¶
An ABC with one abstract method
__bytes__.
- classtyping.SupportsComplex¶
An ABC with one abstract method
__complex__.
- classtyping.SupportsFloat¶
An ABC with one abstract method
__float__.
- classtyping.SupportsIndex¶
An ABC with one abstract method
__index__.New in version 3.8.
- classtyping.SupportsInt¶
An ABC with one abstract method
__int__.
- classtyping.SupportsRound¶
An ABC with one abstract method
__round__that is covariant in its return type.
ABCs for working with IO¶
Functions and decorators¶
- typing.cast(typ,val)¶
Cast a value to a type.
This returns the value unchanged. To the type checker thissignals that the return value has the designated type, but atruntime we intentionally don’t check anything (we want thisto be as fast as possible).
- typing.assert_type(val,typ,/)¶
Ask a static type checker to confirm thatval has an inferred type oftyp.
At runtime this does nothing: it returns the first argument unchanged with nochecks or side effects, no matter the actual type of the argument.
When a static type checker encounters a call to
assert_type(), itemits an error if the value is not of the specified type:defgreet(name:str)->None:assert_type(name,str)# OK, inferred type of `name` is `str`assert_type(name,int)# type checker error
This function is useful for ensuring the type checker’s understanding of ascript is in line with the developer’s intentions:
defcomplex_function(arg:object):# Do some complex type-narrowing logic,# after which we hope the inferred type will be `int`...# Test whether the type checker correctly understands our functionassert_type(arg,int)
New in version 3.11.
- typing.assert_never(arg,/)¶
Ask a static type checker to confirm that a line of code is unreachable.
Example:
defint_or_str(arg:int|str)->None:matcharg:caseint():print("It's an int")casestr():print("It's a str")case_asunreachable:assert_never(unreachable)
Here, the annotations allow the type checker to infer that thelast case can never execute, because
argis eitheranintor astr, and both options are covered byearlier cases.If a type checker finds that a call to
assert_never()isreachable, it will emit an error. For example, if the type annotationforargwas insteadint|str|float, the type checker wouldemit an error pointing out thatunreachableis of typefloat.For a call toassert_neverto pass type checking, the inferred type ofthe argument passed in must be the bottom type,Never, and nothingelse.At runtime, this throws an exception when called.
See also
Unreachable Code and Exhaustiveness Checking has moreinformation about exhaustiveness checking with static typing.
New in version 3.11.
- typing.reveal_type(obj,/)¶
Ask a static type checker to reveal the inferred type of an expression.
When a static type checker encounters a call to this function,it emits a diagnostic with the inferred type of the argument. For example:
x:int=1reveal_type(x)# Revealed type is "builtins.int"
This can be useful when you want to debug how your type checkerhandles a particular piece of code.
At runtime, this function prints the runtime type of its argument to
sys.stderrand returns the argument unchanged (allowing the call tobe used within an expression):x=reveal_type(1)# prints "Runtime type is int"print(x)# prints "1"
Note that the runtime type may be different from (more or less specificthan) the type statically inferred by a type checker.
Most type checkers support
reveal_type()anywhere, even if thename is not imported fromtyping. Importing the name fromtyping, however, allows your code to run without runtime errors andcommunicates intent more clearly.New in version 3.11.
- @typing.dataclass_transform(*,eq_default=True,order_default=False,kw_only_default=False,field_specifiers=(),**kwargs)¶
Decorator to mark an object as providing
dataclass-like behavior.dataclass_transformmay be used todecorate a class, metaclass, or a function that is itself a decorator.The presence of@dataclass_transform()tells a static type checker that thedecorated object performs runtime “magic” thattransforms a class in a similar way to@dataclasses.dataclass.Example usage with a decorator function:
T=TypeVar("T")@dataclass_transform()defcreate_model(cls:type[T])->type[T]:...returncls@create_modelclassCustomerModel:id:intname:str
On a base class:
@dataclass_transform()classModelBase:...classCustomerModel(ModelBase):id:intname:str
On a metaclass:
@dataclass_transform()classModelMeta(type):...classModelBase(metaclass=ModelMeta):...classCustomerModel(ModelBase):id:intname:str
The
CustomerModelclasses defined above willbe treated by type checkers similarly to classes created with@dataclasses.dataclass.For example, type checkers will assume these classes have__init__methods that acceptidandname.The decorated class, metaclass, or function may accept the following boolarguments which type checkers will assume have the same effect as theywould have on the
@dataclasses.dataclassdecorator:init,eq,order,unsafe_hash,frozen,match_args,kw_only, andslots. It must be possible for the value of thesearguments (TrueorFalse) to be statically evaluated.The arguments to the
dataclass_transformdecorator can be used tocustomize the default behaviors of the decorated class, metaclass, orfunction:- Parameters:
eq_default (bool) – Indicates whether the
eqparameter is assumed to beTrueorFalseif it is omitted by the caller.Defaults toTrue.order_default (bool) – Indicates whether the
orderparameter isassumed to beTrueorFalseif it is omitted by the caller.Defaults toFalse.kw_only_default (bool) – Indicates whether the
kw_onlyparameter isassumed to beTrueorFalseif it is omitted by the caller.Defaults toFalse.field_specifiers (tuple[Callable[...,Any],...]) – Specifies a static list of supported classesor functions that describe fields, similar to
dataclasses.field().Defaults to().**kwargs (Any) – Arbitrary other keyword arguments are accepted in order to allow forpossible future extensions.
Type checkers recognize the following optional parameters on fieldspecifiers:
Recognised parameters for field specifiers¶ Parameter name
Description
initIndicates whether the field should be included in thesynthesized
__init__method. If unspecified,initdefaults toTrue.defaultProvides the default value for the field.
default_factoryProvides a runtime callback that returns thedefault value for the field. If neither
defaultnordefault_factoryare specified, the field is assumed to have nodefault value and must be provided a value when the class isinstantiated.factoryAn alias for the
default_factoryparameter on field specifiers.kw_onlyIndicates whether the field should be marked askeyword-only. If
True, the field will be keyword-only. IfFalse, it will not be keyword-only. If unspecified, the value ofthekw_onlyparameter on the object decorated withdataclass_transformwill be used, or if that is unspecified, thevalue ofkw_only_defaultondataclass_transformwill be used.aliasProvides an alternative name for the field. This alternativename is used in the synthesized
__init__method.At runtime, this decorator records its arguments in the
__dataclass_transform__attribute on the decorated object.It has no other runtime effect.SeePEP 681 for more details.
New in version 3.11.
- @typing.overload¶
Decorator for creating overloaded functions and methods.
The
@overloaddecorator allows describing functions and methodsthat support multiple different combinations of argument types. A seriesof@overload-decorated definitions must be followed by exactly onenon-@overload-decorated definition (for the same function/method).@overload-decorated definitions are for the benefit of thetype checker only, since they will be overwritten by thenon-@overload-decorated definition. The non-@overload-decorateddefinition, meanwhile, will be used atruntime but should be ignored by a type checker. At runtime, callingan@overload-decorated function directly will raiseNotImplementedError.An example of overload that gives a moreprecise type than can be expressed using a union or a type variable:
@overloaddefprocess(response:None)->None:...@overloaddefprocess(response:int)->tuple[int,str]:...@overloaddefprocess(response:bytes)->str:...defprocess(response):...# actual implementation goes here
SeePEP 484 for more details and comparison with other typing semantics.
Changed in version 3.11:Overloaded functions can now be introspected at runtime using
get_overloads().
- typing.get_overloads(func)¶
Return a sequence of
@overload-decorated definitions forfunc.func is the function object for the implementation of theoverloaded function. For example, given the definition of
processinthe documentation for@overload,get_overloads(process)will return a sequence of three function objectsfor the three defined overloads. If called on a function with no overloads,get_overloads()returns an empty sequence.get_overloads()can be used for introspecting an overloaded function atruntime.New in version 3.11.
- typing.clear_overloads()¶
Clear all registered overloads in the internal registry.
This can be used to reclaim the memory used by the registry.
New in version 3.11.
- @typing.final¶
Decorator to indicate final methods and final classes.
Decorating a method with
@finalindicates to a type checker that themethod cannot be overridden in a subclass. Decorating a class with@finalindicates that it cannot be subclassed.For example:
classBase:@finaldefdone(self)->None:...classSub(Base):defdone(self)->None:# Error reported by type checker...@finalclassLeaf:...classOther(Leaf):# Error reported by type checker...
There is no runtime checking of these properties. SeePEP 591 formore details.
New in version 3.8.
Changed in version 3.11:The decorator will now attempt to set a
__final__attribute toTrueon the decorated object. Thus, a check likeifgetattr(obj,"__final__",False)can be used at runtimeto determine whether an objectobjhas been marked as final.If the decorated object does not support setting attributes,the decorator returns the object unchanged without raising an exception.
- @typing.no_type_check¶
Decorator to indicate that annotations are not type hints.
This works as a class or functiondecorator. With a class, itapplies recursively to all methods and classes defined in that class(but not to methods defined in its superclasses or subclasses). Typecheckers will ignore all annotations in a function or class with thisdecorator.
@no_type_checkmutates the decorated object in place.
- @typing.no_type_check_decorator¶
Decorator to give another decorator the
no_type_check()effect.This wraps the decorator with something that wraps the decoratedfunction in
no_type_check().
- @typing.type_check_only¶
Decorator to mark a class or function as unavailable at runtime.
This decorator is itself not available at runtime. It is mainlyintended to mark classes that are defined in type stub files ifan implementation returns an instance of a private class:
@type_check_onlyclassResponse:# private or not available at runtimecode:intdefget_header(self,name:str)->str:...deffetch_response()->Response:...
Note that returning instances of private classes is not recommended.It is usually preferable to make such classes public.
Introspection helpers¶
- typing.get_type_hints(obj,globalns=None,localns=None,include_extras=False)¶
Return a dictionary containing type hints for a function, method, moduleor class object.
This is often the same as
obj.__annotations__. In addition,forward references encoded as string literals are handled by evaluatingthem inglobalsandlocalsnamespaces. For a classC, returna dictionary constructed by merging all the__annotations__alongC.__mro__in reverse order.The function recursively replaces all
Annotated[T,...]withT,unlessinclude_extrasis set toTrue(seeAnnotatedformore information). For example:classStudent(NamedTuple):name:Annotated[str,'some marker']assertget_type_hints(Student)=={'name':str}assertget_type_hints(Student,include_extras=False)=={'name':str}assertget_type_hints(Student,include_extras=True)=={'name':Annotated[str,'some marker']}
Note
get_type_hints()does not work with importedtype aliases that include forward references.Enabling postponed evaluation of annotations (PEP 563) may removethe need for most forward references.Changed in version 3.9:Added
include_extrasparameter as part ofPEP 593.See the documentation onAnnotatedfor more information.Changed in version 3.11:Previously,
Optional[t]was added for function and method annotationsif a default value equal toNonewas set.Now the annotation is returned unchanged.
- typing.get_origin(tp)¶
Get the unsubscripted version of a type: for a typing object of the form
X[Y,Z,...]returnX.If
Xis a typing-module alias for a builtin orcollectionsclass, it will be normalized to the original class.IfXis an instance ofParamSpecArgsorParamSpecKwargs,return the underlyingParamSpec.ReturnNonefor unsupported objects.Examples:
assertget_origin(str)isNoneassertget_origin(Dict[str,int])isdictassertget_origin(Union[int,str])isUnionP=ParamSpec('P')assertget_origin(P.args)isPassertget_origin(P.kwargs)isP
New in version 3.8.
- typing.get_args(tp)¶
Get type arguments with all substitutions performed: for a typing objectof the form
X[Y,Z,...]return(Y,Z,...).If
Xis a union orLiteralcontained in anothergeneric type, the order of(Y,Z,...)may be different from the orderof the original arguments[Y,Z,...]due to type caching.Return()for unsupported objects.Examples:
assertget_args(int)==()assertget_args(Dict[int,str])==(int,str)assertget_args(Union[int,str])==(int,str)
New in version 3.8.
- typing.is_typeddict(tp)¶
Check if a type is a
TypedDict.For example:
classFilm(TypedDict):title:stryear:intassertis_typeddict(Film)assertnotis_typeddict(list|str)# TypedDict is a factory for creating typed dicts,# not a typed dict itselfassertnotis_typeddict(TypedDict)
New in version 3.10.
- classtyping.ForwardRef¶
Class used for internal typing representation of string forward references.
For example,
List["SomeClass"]is implicitly transformed intoList[ForwardRef("SomeClass")].ForwardRefshould not be instantiated bya user, but may be used by introspection tools.Note
PEP 585 generic types such as
list["SomeClass"]will not beimplicitly transformed intolist[ForwardRef("SomeClass")]and thuswill not automatically resolve tolist[SomeClass].New in version 3.7.4.
Constant¶
- typing.TYPE_CHECKING¶
A special constant that is assumed to be
Trueby 3rd party statictype checkers. It isFalseat runtime.Usage:
ifTYPE_CHECKING:importexpensive_moddeffun(arg:'expensive_mod.SomeType')->None:local_var:expensive_mod.AnotherType=other_fun()
The first type annotation must be enclosed in quotes, making it a“forward reference”, to hide the
expensive_modreference from theinterpreter runtime. Type annotations for local variables are notevaluated, so the second annotation does not need to be enclosed in quotes.Note
If
from__future__importannotationsis used,annotations are not evaluated at function definition time.Instead, they are stored as strings in__annotations__.This makes it unnecessary to use quotes around the annotation(seePEP 563).New in version 3.5.2.
Deprecated aliases¶
This module defines several deprecated aliases to pre-existingstandard library classes. These were originally included in the typingmodule in order to support parameterizing these generic classes using[].However, the aliases became redundant in Python 3.9 when thecorresponding pre-existing classes were enhanced to support[] (seePEP 585).
The redundant types are deprecated as of Python 3.9. However, while the aliasesmay be removed at some point, removal of these aliases is not currentlyplanned. As such, no deprecation warnings are currently issued by theinterpreter for these aliases.
If at some point it is decided to remove these deprecated aliases, adeprecation warning will be issued by the interpreter for at least two releasesprior to removal. The aliases are guaranteed to remain in the typing modulewithout deprecation warnings until at least Python 3.14.
Type checkers are encouraged to flag uses of the deprecated types if theprogram they are checking targets a minimum Python version of 3.9 or newer.
Aliases to built-in types¶
- classtyping.Dict(dict,MutableMapping[KT,VT])¶
Deprecated alias to
dict.Note that to annotate arguments, it is preferredto use an abstract collection type such as
Mappingrather than to usedictortyping.Dict.This type can be used as follows:
defcount_words(text:str)->Dict[str,int]:...
Deprecated since version 3.9:
builtins.dictnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.List(list,MutableSequence[T])¶
Deprecated alias to
list.Note that to annotate arguments, it is preferredto use an abstract collection type such as
SequenceorIterablerather than to uselistortyping.List.This type may be used as follows:
T=TypeVar('T',int,float)defvec2(x:T,y:T)->List[T]:return[x,y]defkeep_positives(vector:Sequence[T])->List[T]:return[itemforiteminvectorifitem>0]
Deprecated since version 3.9:
builtins.listnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.Set(set,MutableSet[T])¶
Deprecated alias to
builtins.set.Note that to annotate arguments, it is preferredto use an abstract collection type such as
AbstractSetrather than to usesetortyping.Set.Deprecated since version 3.9:
builtins.setnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.FrozenSet(frozenset,AbstractSet[T_co])¶
Deprecated alias to
builtins.frozenset.Deprecated since version 3.9:
builtins.frozensetnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- typing.Tuple¶
Deprecated alias for
tuple.tupleandTupleare special-cased in the type system; seeAnnotating tuples for more details.Deprecated since version 3.9:
builtins.tuplenow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.Type(Generic[CT_co])¶
Deprecated alias to
type.SeeThe type of class objects for details on using
typeortyping.Typein type annotations.New in version 3.5.2.
Deprecated since version 3.9:
builtins.typenow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
Aliases to types incollections¶
- classtyping.DefaultDict(collections.defaultdict,MutableMapping[KT,VT])¶
Deprecated alias to
collections.defaultdict.New in version 3.5.2.
Deprecated since version 3.9:
collections.defaultdictnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.OrderedDict(collections.OrderedDict,MutableMapping[KT,VT])¶
Deprecated alias to
collections.OrderedDict.New in version 3.7.2.
Deprecated since version 3.9:
collections.OrderedDictnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.ChainMap(collections.ChainMap,MutableMapping[KT,VT])¶
Deprecated alias to
collections.ChainMap.New in version 3.6.1.
Deprecated since version 3.9:
collections.ChainMapnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.Counter(collections.Counter,Dict[T,int])¶
Deprecated alias to
collections.Counter.New in version 3.6.1.
Deprecated since version 3.9:
collections.Counternow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.Deque(deque,MutableSequence[T])¶
Deprecated alias to
collections.deque.New in version 3.6.1.
Deprecated since version 3.9:
collections.dequenow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
Aliases to other concrete types¶
- classtyping.Pattern¶
- classtyping.Match¶
Deprecated aliases corresponding to the return types from
re.compile()andre.match().These types (and the corresponding functions) are generic over
AnyStr.Patterncan be specialised asPattern[str]orPattern[bytes];Matchcan be specialised asMatch[str]orMatch[bytes].Deprecated since version 3.8, will be removed in version 3.13:The
typing.renamespace is deprecated and will be removed.These types should be directly imported fromtypinginstead.Deprecated since version 3.9:Classes
PatternandMatchfromrenow support[].SeePEP 585 andGeneric Alias Type.
- classtyping.Text¶
Deprecated alias for
str.Textis provided to supply a forwardcompatible path for Python 2 code: in Python 2,Textis an alias forunicode.Use
Textto indicate that a value must contain a unicode string ina manner that is compatible with both Python 2 and Python 3:defadd_unicode_checkmark(text:Text)->Text:returntext+u'\u2713'
New in version 3.5.2.
Deprecated since version 3.11:Python 2 is no longer supported, and most type checkers also no longersupport type checking Python 2 code. Removal of the alias is notcurrently planned, but users are encouraged to use
strinstead ofText.
Aliases to container ABCs incollections.abc¶
- classtyping.AbstractSet(Collection[T_co])¶
Deprecated alias to
collections.abc.Set.Deprecated since version 3.9:
collections.abc.Setnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.ByteString(Sequence[int])¶
This type represents the types
bytes,bytearray,andmemoryviewof byte sequences.Deprecated since version 3.9, will be removed in version 3.14:Prefer
typing_extensions.Buffer, or a union likebytes|bytearray|memoryview.
- classtyping.Collection(Sized,Iterable[T_co],Container[T_co])¶
Deprecated alias to
collections.abc.Collection.New in version 3.6.
Deprecated since version 3.9:
collections.abc.Collectionnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.Container(Generic[T_co])¶
Deprecated alias to
collections.abc.Container.Deprecated since version 3.9:
collections.abc.Containernow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.ItemsView(MappingView,AbstractSet[tuple[KT_co,VT_co]])¶
Deprecated alias to
collections.abc.ItemsView.Deprecated since version 3.9:
collections.abc.ItemsViewnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.KeysView(MappingView,AbstractSet[KT_co])¶
Deprecated alias to
collections.abc.KeysView.Deprecated since version 3.9:
collections.abc.KeysViewnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.Mapping(Collection[KT],Generic[KT,VT_co])¶
Deprecated alias to
collections.abc.Mapping.This type can be used as follows:
defget_position_in_index(word_list:Mapping[str,int],word:str)->int:returnword_list[word]
Deprecated since version 3.9:
collections.abc.Mappingnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.MappingView(Sized)¶
Deprecated alias to
collections.abc.MappingView.Deprecated since version 3.9:
collections.abc.MappingViewnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.MutableMapping(Mapping[KT,VT])¶
Deprecated alias to
collections.abc.MutableMapping.Deprecated since version 3.9:
collections.abc.MutableMappingnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.MutableSequence(Sequence[T])¶
Deprecated alias to
collections.abc.MutableSequence.Deprecated since version 3.9:
collections.abc.MutableSequencenow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.MutableSet(AbstractSet[T])¶
Deprecated alias to
collections.abc.MutableSet.Deprecated since version 3.9:
collections.abc.MutableSetnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.Sequence(Reversible[T_co],Collection[T_co])¶
Deprecated alias to
collections.abc.Sequence.Deprecated since version 3.9:
collections.abc.Sequencenow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.ValuesView(MappingView,Collection[_VT_co])¶
Deprecated alias to
collections.abc.ValuesView.Deprecated since version 3.9:
collections.abc.ValuesViewnow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
Aliases to asynchronous ABCs incollections.abc¶
- classtyping.Coroutine(Awaitable[ReturnType],Generic[YieldType,SendType,ReturnType])¶
Deprecated alias to
collections.abc.Coroutine.The variance and order of type variablescorrespond to those of
Generator, for example:fromcollections.abcimportCoroutinec:Coroutine[list[str],str,int]# Some coroutine defined elsewherex=c.send('hi')# Inferred type of 'x' is list[str]asyncdefbar()->None:y=awaitc# Inferred type of 'y' is int
New in version 3.5.3.
Deprecated since version 3.9:
collections.abc.Coroutinenow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.AsyncGenerator(AsyncIterator[YieldType],Generic[YieldType,SendType])¶
Deprecated alias to
collections.abc.AsyncGenerator.An async generator can be annotated by the generic type
AsyncGenerator[YieldType,SendType]. For example:asyncdefecho_round()->AsyncGenerator[int,float]:sent=yield0whilesent>=0.0:rounded=awaitround(sent)sent=yieldrounded
Unlike normal generators, async generators cannot return a value, so thereis no
ReturnTypetype parameter. As withGenerator, theSendTypebehaves contravariantly.If your generator will only yield values, set the
SendTypetoNone:asyncdefinfinite_stream(start:int)->AsyncGenerator[int,None]:whileTrue:yieldstartstart=awaitincrement(start)
Alternatively, annotate your generator as having a return type ofeither
AsyncIterable[YieldType]orAsyncIterator[YieldType]:asyncdefinfinite_stream(start:int)->AsyncIterator[int]:whileTrue:yieldstartstart=awaitincrement(start)
New in version 3.6.1.
Deprecated since version 3.9:
collections.abc.AsyncGeneratornow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.AsyncIterable(Generic[T_co])¶
Deprecated alias to
collections.abc.AsyncIterable.New in version 3.5.2.
Deprecated since version 3.9:
collections.abc.AsyncIterablenow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.AsyncIterator(AsyncIterable[T_co])¶
Deprecated alias to
collections.abc.AsyncIterator.New in version 3.5.2.
Deprecated since version 3.9:
collections.abc.AsyncIteratornow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.Awaitable(Generic[T_co])¶
Deprecated alias to
collections.abc.Awaitable.New in version 3.5.2.
Deprecated since version 3.9:
collections.abc.Awaitablenow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
Aliases to other ABCs incollections.abc¶
- classtyping.Iterable(Generic[T_co])¶
Deprecated alias to
collections.abc.Iterable.Deprecated since version 3.9:
collections.abc.Iterablenow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.Iterator(Iterable[T_co])¶
Deprecated alias to
collections.abc.Iterator.Deprecated since version 3.9:
collections.abc.Iteratornow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- typing.Callable¶
Deprecated alias to
collections.abc.Callable.SeeAnnotating callable objects for details on how to use
collections.abc.Callableandtyping.Callablein type annotations.Deprecated since version 3.9:
collections.abc.Callablenow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.Changed in version 3.10:
Callablenow supportsParamSpecandConcatenate.SeePEP 612 for more details.
- classtyping.Generator(Iterator[YieldType],Generic[YieldType,SendType,ReturnType])¶
Deprecated alias to
collections.abc.Generator.A generator can be annotated by the generic type
Generator[YieldType,SendType,ReturnType]. For example:defecho_round()->Generator[int,float,str]:sent=yield0whilesent>=0:sent=yieldround(sent)return'Done'
Note that unlike many other generics in the typing module, the
SendTypeofGeneratorbehaves contravariantly, not covariantly orinvariantly.If your generator will only yield values, set the
SendTypeandReturnTypetoNone:definfinite_stream(start:int)->Generator[int,None,None]:whileTrue:yieldstartstart+=1
Alternatively, annotate your generator as having a return type ofeither
Iterable[YieldType]orIterator[YieldType]:definfinite_stream(start:int)->Iterator[int]:whileTrue:yieldstartstart+=1
Deprecated since version 3.9:
collections.abc.Generatornow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.Hashable¶
Alias to
collections.abc.Hashable.
- classtyping.Reversible(Iterable[T_co])¶
Deprecated alias to
collections.abc.Reversible.Deprecated since version 3.9:
collections.abc.Reversiblenow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.Sized¶
Alias to
collections.abc.Sized.
Aliases tocontextlib ABCs¶
- classtyping.ContextManager(Generic[T_co])¶
Deprecated alias to
contextlib.AbstractContextManager.New in version 3.5.4.
Deprecated since version 3.9:
contextlib.AbstractContextManagernow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
- classtyping.AsyncContextManager(Generic[T_co])¶
Deprecated alias to
contextlib.AbstractAsyncContextManager.New in version 3.6.2.
Deprecated since version 3.9:
contextlib.AbstractAsyncContextManagernow supports subscripting ([]).SeePEP 585 andGeneric Alias Type.
Deprecation Timeline of Major Features¶
Certain features intyping are deprecated and may be removed in a futureversion of Python. The following table summarizes major deprecations for yourconvenience. This is subject to change, and not all deprecations are listed.
Feature | Deprecated in | Projected removal | PEP/issue |
|---|---|---|---|
| 3.8 | 3.13 | |
| 3.9 | Undecided (seeDeprecated aliases for more information) | |
3.9 | 3.14 | ||
3.11 | Undecided |