ast
— Abstract Syntax Trees¶
Source code:Lib/ast.py
Theast
module helps Python applications to process trees of the Pythonabstract syntax grammar. The abstract syntax itself might change with eachPython release; this module helps to find out programmatically what the currentgrammar looks like.
An abstract syntax tree can be generated by passingast.PyCF_ONLY_AST
asa flag to thecompile()
built-in function, or using theparse()
helper provided in this module. The result will be a tree of objects whoseclasses all inherit fromast.AST
. An abstract syntax tree can becompiled into a Python code object using the built-incompile()
function.
Abstract Grammar¶
The abstract grammar is currently defined as follows:
-- ASDL's 4 builtin types are:-- identifier, int, string, constantmodulePython{mod=Module(stmt*body,type_ignore*type_ignores)|Interactive(stmt*body)|Expression(exprbody)|FunctionType(expr*argtypes,exprreturns)stmt=FunctionDef(identifiername,argumentsargs,stmt*body,expr*decorator_list,expr?returns,string?type_comment,type_param*type_params)|AsyncFunctionDef(identifiername,argumentsargs,stmt*body,expr*decorator_list,expr?returns,string?type_comment,type_param*type_params)|ClassDef(identifiername,expr*bases,keyword*keywords,stmt*body,expr*decorator_list,type_param*type_params)|Return(expr?value)|Delete(expr*targets)|Assign(expr*targets,exprvalue,string?type_comment)|TypeAlias(exprname,type_param*type_params,exprvalue)|AugAssign(exprtarget,operatorop,exprvalue)-- 'simple' indicates that we annotate simple name without parens|AnnAssign(exprtarget,exprannotation,expr?value,intsimple)-- use 'orelse' because else is a keyword in target languages|For(exprtarget,expriter,stmt*body,stmt*orelse,string?type_comment)|AsyncFor(exprtarget,expriter,stmt*body,stmt*orelse,string?type_comment)|While(exprtest,stmt*body,stmt*orelse)|If(exprtest,stmt*body,stmt*orelse)|With(withitem*items,stmt*body,string?type_comment)|AsyncWith(withitem*items,stmt*body,string?type_comment)|Match(exprsubject,match_case*cases)|Raise(expr?exc,expr?cause)|Try(stmt*body,excepthandler*handlers,stmt*orelse,stmt*finalbody)|TryStar(stmt*body,excepthandler*handlers,stmt*orelse,stmt*finalbody)|Assert(exprtest,expr?msg)|Import(alias*names)|ImportFrom(identifier?module,alias*names,int?level)|Global(identifier*names)|Nonlocal(identifier*names)|Expr(exprvalue)|Pass|Break|Continue-- col_offset is the byte offset in the utf8 string the parser usesattributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)-- BoolOp() can use left & right?expr=BoolOp(boolopop,expr*values)|NamedExpr(exprtarget,exprvalue)|BinOp(exprleft,operatorop,exprright)|UnaryOp(unaryopop,exproperand)|Lambda(argumentsargs,exprbody)|IfExp(exprtest,exprbody,exprorelse)|Dict(expr*keys,expr*values)|Set(expr*elts)|ListComp(exprelt,comprehension*generators)|SetComp(exprelt,comprehension*generators)|DictComp(exprkey,exprvalue,comprehension*generators)|GeneratorExp(exprelt,comprehension*generators)-- the grammar constrains where yield expressions can occur|Await(exprvalue)|Yield(expr?value)|YieldFrom(exprvalue)-- need sequences for compare to distinguish between-- x < 4 < 3 and (x < 4) < 3|Compare(exprleft,cmpop*ops,expr*comparators)|Call(exprfunc,expr*args,keyword*keywords)|FormattedValue(exprvalue,intconversion,expr?format_spec)|JoinedStr(expr*values)|Constant(constantvalue,string?kind)-- the following expression can appear in assignment context|Attribute(exprvalue,identifierattr,expr_contextctx)|Subscript(exprvalue,exprslice,expr_contextctx)|Starred(exprvalue,expr_contextctx)|Name(identifierid,expr_contextctx)|List(expr*elts,expr_contextctx)|Tuple(expr*elts,expr_contextctx)-- can appear only in Subscript|Slice(expr?lower,expr?upper,expr?step)-- col_offset is the byte offset in the utf8 string the parser usesattributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)expr_context=Load|Store|Delboolop=And|Oroperator=Add|Sub|Mult|MatMult|Div|Mod|Pow|LShift|RShift|BitOr|BitXor|BitAnd|FloorDivunaryop=Invert|Not|UAdd|USubcmpop=Eq|NotEq|Lt|LtE|Gt|GtE|Is|IsNot|In|NotIncomprehension=(exprtarget,expriter,expr*ifs,intis_async)excepthandler=ExceptHandler(expr?type,identifier?name,stmt*body)attributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)arguments=(arg*posonlyargs,arg*args,arg?vararg,arg*kwonlyargs,expr*kw_defaults,arg?kwarg,expr*defaults)arg=(identifierarg,expr?annotation,string?type_comment)attributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)-- keyword arguments supplied to call (NULL identifier for **kwargs)keyword=(identifier?arg,exprvalue)attributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)-- import name with optional 'as' alias.alias=(identifiername,identifier?asname)attributes(intlineno,intcol_offset,int?end_lineno,int?end_col_offset)withitem=(exprcontext_expr,expr?optional_vars)match_case=(patternpattern,expr?guard,stmt*body)pattern=MatchValue(exprvalue)|MatchSingleton(constantvalue)|MatchSequence(pattern*patterns)|MatchMapping(expr*keys,pattern*patterns,identifier?rest)|MatchClass(exprcls,pattern*patterns,identifier*kwd_attrs,pattern*kwd_patterns)|MatchStar(identifier?name)-- The optional "rest" MatchMapping parameter handles capturing extra mapping keys|MatchAs(pattern?pattern,identifier?name)|MatchOr(pattern*patterns)attributes(intlineno,intcol_offset,intend_lineno,intend_col_offset)type_ignore=TypeIgnore(intlineno,stringtag)type_param=TypeVar(identifiername,expr?bound,expr?default_value)|ParamSpec(identifiername,expr?default_value)|TypeVarTuple(identifiername,expr?default_value)attributes(intlineno,intcol_offset,intend_lineno,intend_col_offset)}
Node classes¶
- classast.AST¶
This is the base of all AST node classes. The actual node classes arederived from the
Parser/Python.asdl
file, which is reproducedabove. They are defined in the_ast
Cmodule and re-exported inast
.There is one class defined for each left-hand side symbol in the abstractgrammar (for example,
ast.stmt
orast.expr
). In addition,there is one class defined for each constructor on the right-hand side; theseclasses inherit from the classes for the left-hand side trees. For example,ast.BinOp
inherits fromast.expr
. For production ruleswith alternatives (aka “sums”), the left-hand side class is abstract: onlyinstances of specific constructor nodes are ever created.- _fields¶
Each concrete class has an attribute
_fields
which gives the namesof all child nodes.Each instance of a concrete class has one attribute for each child node,of the type as defined in the grammar. For example,
ast.BinOp
instances have an attributeleft
of typeast.expr
.If these attributes are marked as optional in the grammar (using aquestion mark), the value might be
None
. If the attributes can havezero-or-more values (marked with an asterisk), the values are representedas Python lists. All possible attributes must be present and have validvalues when compiling an AST withcompile()
.
- _field_types¶
The
_field_types
attribute on each concrete class is a dictionarymapping field names (as also listed in_fields
) to their types.>>>ast.TypeVar._field_types{'name': <class 'str'>, 'bound': ast.expr | None, 'default_value': ast.expr | None}
Added in version 3.13.
- lineno¶
- col_offset¶
- end_lineno¶
- end_col_offset¶
Instances of
ast.expr
andast.stmt
subclasses havelineno
,col_offset
,end_lineno
, andend_col_offset
attributes. Thelineno
andend_lineno
are the first and last line numbers of source text span (1-indexed so thefirst line is line 1) and thecol_offset
andend_col_offset
are the corresponding UTF-8 byte offsets of the first and last tokens thatgenerated the node. The UTF-8 offset is recorded because the parser usesUTF-8 internally.Note that the end positions are not required by the compiler and aretherefore optional. The end offset isafter the last symbol, for exampleone can get the source segment of a one-line expression node using
source_line[node.col_offset:node.end_col_offset]
.
The constructor of a class
ast.T
parses its arguments as follows:If there are positional arguments, there must be as many as there are itemsin
T._fields
; they will be assigned as attributes of these names.If there are keyword arguments, they will set the attributes of the samenames to the given values.
For example, to create and populate an
ast.UnaryOp
node, you couldusenode=ast.UnaryOp(ast.USub(),ast.Constant(5,lineno=0,col_offset=0),lineno=0,col_offset=0)
If a field that is optional in the grammar is omitted from the constructor,it defaults to
None
. If a list field is omitted, it defaults to the emptylist. If a field of typeast.expr_context
is omitted, it defaults toLoad()
. If any other field is omitted, aDeprecationWarning
is raisedand the AST node will not have this field. In Python 3.15, this condition willraise an error.
Changed in version 3.8:Classast.Constant
is now used for all constants.
Changed in version 3.9:Simple indices are represented by their value, extended slices arerepresented as tuples.
Deprecated since version 3.8:Old classesast.Num
,ast.Str
,ast.Bytes
,ast.NameConstant
andast.Ellipsis
are still available,but they will be removed in future Python releases. In the meantime,instantiating them will return an instance of a different class.
Deprecated since version 3.9:Old classesast.Index
andast.ExtSlice
are stillavailable, but they will be removed in future Python releases.In the meantime, instantiating them will return an instance ofa different class.
Deprecated since version 3.13, will be removed in version 3.15:Previous versions of Python allowed the creation of AST nodes that were missingrequired fields. Similarly, AST node constructors allowed arbitrary keywordarguments that were set as attributes of the AST node, even if they did notmatch any of the fields of the AST node. This behavior is deprecated and willbe removed in Python 3.15.
Note
The descriptions of the specific node classes displayed herewere initially adapted from the fantasticGreen TreeSnakes project andall its contributors.
Root nodes¶
- classast.Module(body,type_ignores)¶
A Python module, as withfile input.Node type generated by
ast.parse()
in the default"exec"
mode.body
is alist
of the module’sStatements.type_ignores
is alist
of the module’s type ignore comments;seeast.parse()
for more details.>>>print(ast.dump(ast.parse('x = 1'),indent=4))Module( body=[ Assign( targets=[ Name(id='x', ctx=Store())], value=Constant(value=1))])
- classast.Expression(body)¶
A single Pythonexpression input.Node type generated by
ast.parse()
whenmode is"eval"
.body
is a single node,one of theexpression types.>>>print(ast.dump(ast.parse('123',mode='eval'),indent=4))Expression( body=Constant(value=123))
- classast.Interactive(body)¶
A singleinteractive input, like inInteractive Mode.Node type generated by
ast.parse()
whenmode is"single"
.body
is alist
ofstatement nodes.>>>print(ast.dump(ast.parse('x = 1; y = 2',mode='single'),indent=4))Interactive( body=[ Assign( targets=[ Name(id='x', ctx=Store())], value=Constant(value=1)), Assign( targets=[ Name(id='y', ctx=Store())], value=Constant(value=2))])
- classast.FunctionType(argtypes,returns)¶
A representation of an old-style type comments for functions,as Python versions prior to 3.5 didn’t supportPEP 484 annotations.Node type generated by
ast.parse()
whenmode is"func_type"
.Such type comments would look like this:
defsum_two_number(a,b):# type: (int, int) -> intreturna+b
argtypes
is alist
ofexpression nodes.returns
is a singleexpression node.>>>print(ast.dump(ast.parse('(int, str) -> List[int]',mode='func_type'),indent=4))FunctionType( argtypes=[ Name(id='int', ctx=Load()), Name(id='str', ctx=Load())], returns=Subscript( value=Name(id='List', ctx=Load()), slice=Name(id='int', ctx=Load()), ctx=Load()))
Added in version 3.8.
Literals¶
- classast.Constant(value)¶
A constant value. The
value
attribute of theConstant
literal contains thePython object it represents. The values represented can be simple typessuch as a number, string orNone
, but also immutable container types(tuples and frozensets) if all of their elements are constant.>>>print(ast.dump(ast.parse('123',mode='eval'),indent=4))Expression( body=Constant(value=123))
- classast.FormattedValue(value,conversion,format_spec)¶
Node representing a single formatting field in an f-string. If the stringcontains a single formatting field and nothing else the node can beisolated otherwise it appears in
JoinedStr
.value
is any expression node (such as a literal, a variable, or afunction call).conversion
is an integer:-1: no formatting
115:
!s
string formatting114:
!r
repr formatting97:
!a
ascii formatting
format_spec
is aJoinedStr
node representing the formattingof the value, orNone
if no format was specified. Bothconversion
andformat_spec
can be set at the same time.
- classast.JoinedStr(values)¶
An f-string, comprising a series of
FormattedValue
andConstant
nodes.>>>print(ast.dump(ast.parse('f"sin({a}) is {sin(a):.3}"',mode='eval'),indent=4))Expression( body=JoinedStr( values=[ Constant(value='sin('), FormattedValue( value=Name(id='a', ctx=Load()), conversion=-1), Constant(value=') is '), FormattedValue( value=Call( func=Name(id='sin', ctx=Load()), args=[ Name(id='a', ctx=Load())]), conversion=-1, format_spec=JoinedStr( values=[ Constant(value='.3')]))]))
- classast.List(elts,ctx)¶
- classast.Tuple(elts,ctx)¶
A list or tuple.
elts
holds a list of nodes representing the elements.ctx
isStore
if the container is an assignment target (i.e.(x,y)=something
), andLoad
otherwise.>>>print(ast.dump(ast.parse('[1, 2, 3]',mode='eval'),indent=4))Expression( body=List( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)], ctx=Load()))>>>print(ast.dump(ast.parse('(1, 2, 3)',mode='eval'),indent=4))Expression( body=Tuple( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)], ctx=Load()))
- classast.Set(elts)¶
A set.
elts
holds a list of nodes representing the set’s elements.>>>print(ast.dump(ast.parse('{1, 2, 3}',mode='eval'),indent=4))Expression( body=Set( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)]))
- classast.Dict(keys,values)¶
A dictionary.
keys
andvalues
hold lists of nodes representing thekeys and the values respectively, in matching order (what would be returnedwhen callingdictionary.keys()
anddictionary.values()
).When doing dictionary unpacking using dictionary literals the expression to beexpanded goes in the
values
list, with aNone
at the correspondingposition inkeys
.>>>print(ast.dump(ast.parse('{"a":1, **d}',mode='eval'),indent=4))Expression( body=Dict( keys=[ Constant(value='a'), None], values=[ Constant(value=1), Name(id='d', ctx=Load())]))
Variables¶
- classast.Name(id,ctx)¶
A variable name.
id
holds the name as a string, andctx
is one ofthe following types.
- classast.Load¶
- classast.Store¶
- classast.Del¶
Variable references can be used to load the value of a variable, to assigna new value to it, or to delete it. Variable references are given a contextto distinguish these cases.
>>>print(ast.dump(ast.parse('a'),indent=4))Module( body=[ Expr( value=Name(id='a', ctx=Load()))])>>>print(ast.dump(ast.parse('a = 1'),indent=4))Module( body=[ Assign( targets=[ Name(id='a', ctx=Store())], value=Constant(value=1))])>>>print(ast.dump(ast.parse('del a'),indent=4))Module( body=[ Delete( targets=[ Name(id='a', ctx=Del())])])
- classast.Starred(value,ctx)¶
A
*var
variable reference.value
holds the variable, typically aName
node. This type must be used when building aCall
node with*args
.>>>print(ast.dump(ast.parse('a, *b = it'),indent=4))Module( body=[ Assign( targets=[ Tuple( elts=[ Name(id='a', ctx=Store()), Starred( value=Name(id='b', ctx=Store()), ctx=Store())], ctx=Store())], value=Name(id='it', ctx=Load()))])
Expressions¶
- classast.Expr(value)¶
When an expression, such as a function call, appears as a statement by itselfwith its return value not used or stored, it is wrapped in this container.
value
holds one of the other nodes in this section, aConstant
, aName
, aLambda
, aYield
orYieldFrom
node.>>>print(ast.dump(ast.parse('-a'),indent=4))Module( body=[ Expr( value=UnaryOp( op=USub(), operand=Name(id='a', ctx=Load())))])
- classast.UnaryOp(op,operand)¶
A unary operation.
op
is the operator, andoperand
any expressionnode.
- classast.UAdd¶
- classast.USub¶
- classast.Not¶
- classast.Invert¶
Unary operator tokens.
Not
is thenot
keyword,Invert
is the~
operator.>>>print(ast.dump(ast.parse('not x',mode='eval'),indent=4))Expression( body=UnaryOp( op=Not(), operand=Name(id='x', ctx=Load())))
- classast.BinOp(left,op,right)¶
A binary operation (like addition or division).
op
is the operator, andleft
andright
are any expression nodes.>>>print(ast.dump(ast.parse('x + y',mode='eval'),indent=4))Expression( body=BinOp( left=Name(id='x', ctx=Load()), op=Add(), right=Name(id='y', ctx=Load())))
- classast.Add¶
- classast.Sub¶
- classast.Mult¶
- classast.Div¶
- classast.FloorDiv¶
- classast.Mod¶
- classast.Pow¶
- classast.LShift¶
- classast.RShift¶
- classast.BitOr¶
- classast.BitXor¶
- classast.BitAnd¶
- classast.MatMult¶
Binary operator tokens.
- classast.BoolOp(op,values)¶
A boolean operation, ‘or’ or ‘and’.
op
isOr
orAnd
.values
are the values involved. Consecutive operations with the sameoperator, such asaorborc
, are collapsed into one node with severalvalues.This doesn’t include
not
, which is aUnaryOp
.>>>print(ast.dump(ast.parse('x or y',mode='eval'),indent=4))Expression( body=BoolOp( op=Or(), values=[ Name(id='x', ctx=Load()), Name(id='y', ctx=Load())]))
- classast.Compare(left,ops,comparators)¶
A comparison of two or more values.
left
is the first value in thecomparison,ops
the list of operators, andcomparators
the listof values after the first element in the comparison.>>>print(ast.dump(ast.parse('1 <= a < 10',mode='eval'),indent=4))Expression( body=Compare( left=Constant(value=1), ops=[ LtE(), Lt()], comparators=[ Name(id='a', ctx=Load()), Constant(value=10)]))
- classast.Eq¶
- classast.NotEq¶
- classast.Lt¶
- classast.LtE¶
- classast.Gt¶
- classast.GtE¶
- classast.Is¶
- classast.IsNot¶
- classast.In¶
- classast.NotIn¶
Comparison operator tokens.
- classast.Call(func,args,keywords)¶
A function call.
func
is the function, which will often be aName
orAttribute
object. Of the arguments:args
holds a list of the arguments passed by position.keywords
holds a list ofkeyword
objects representingarguments passed by keyword.
The
args
andkeywords
arguments are optional and default to empty lists.>>>print(ast.dump(ast.parse('func(a, b=c, *d, **e)',mode='eval'),indent=4))Expression( body=Call( func=Name(id='func', ctx=Load()), args=[ Name(id='a', ctx=Load()), Starred( value=Name(id='d', ctx=Load()), ctx=Load())], keywords=[ keyword( arg='b', value=Name(id='c', ctx=Load())), keyword( value=Name(id='e', ctx=Load()))]))
- classast.keyword(arg,value)¶
A keyword argument to a function call or class definition.
arg
is a rawstring of the parameter name,value
is a node to pass in.
- classast.IfExp(test,body,orelse)¶
An expression such as
aifbelsec
. Each field holds a single node, soin the following example, all three areName
nodes.>>>print(ast.dump(ast.parse('a if b else c',mode='eval'),indent=4))Expression( body=IfExp( test=Name(id='b', ctx=Load()), body=Name(id='a', ctx=Load()), orelse=Name(id='c', ctx=Load())))
- classast.Attribute(value,attr,ctx)¶
Attribute access, e.g.
d.keys
.value
is a node, typically aName
.attr
is a bare string giving the name of the attribute,andctx
isLoad
,Store
orDel
according to howthe attribute is acted on.>>>print(ast.dump(ast.parse('snake.colour',mode='eval'),indent=4))Expression( body=Attribute( value=Name(id='snake', ctx=Load()), attr='colour', ctx=Load()))
- classast.NamedExpr(target,value)¶
A named expression. This AST node is produced by the assignment expressionsoperator (also known as the walrus operator). As opposed to the
Assign
node in which the first argument can be multiple nodes, in this case bothtarget
andvalue
must be single nodes.>>>print(ast.dump(ast.parse('(x := 4)',mode='eval'),indent=4))Expression( body=NamedExpr( target=Name(id='x', ctx=Store()), value=Constant(value=4)))
Added in version 3.8.
Subscripting¶
- classast.Subscript(value,slice,ctx)¶
A subscript, such as
l[1]
.value
is the subscripted object(usually sequence or mapping).slice
is an index, slice or key.It can be aTuple
and contain aSlice
.ctx
isLoad
,Store
orDel
according to the action performed with the subscript.>>>print(ast.dump(ast.parse('l[1:2, 3]',mode='eval'),indent=4))Expression( body=Subscript( value=Name(id='l', ctx=Load()), slice=Tuple( elts=[ Slice( lower=Constant(value=1), upper=Constant(value=2)), Constant(value=3)], ctx=Load()), ctx=Load()))
- classast.Slice(lower,upper,step)¶
Regular slicing (on the form
lower:upper
orlower:upper:step
).Can occur only inside theslice field ofSubscript
, eitherdirectly or as an element ofTuple
.>>>print(ast.dump(ast.parse('l[1:2]',mode='eval'),indent=4))Expression( body=Subscript( value=Name(id='l', ctx=Load()), slice=Slice( lower=Constant(value=1), upper=Constant(value=2)), ctx=Load()))
Comprehensions¶
- classast.ListComp(elt,generators)¶
- classast.SetComp(elt,generators)¶
- classast.GeneratorExp(elt,generators)¶
- classast.DictComp(key,value,generators)¶
List and set comprehensions, generator expressions, and dictionarycomprehensions.
elt
(orkey
andvalue
) is a single noderepresenting the part that will be evaluated for each item.generators
is a list ofcomprehension
nodes.>>>print(ast.dump(...ast.parse('[x for x in numbers]',mode='eval'),...indent=4,...))Expression( body=ListComp( elt=Name(id='x', ctx=Load()), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), is_async=0)]))>>>print(ast.dump(...ast.parse('{x: x**2 for x in numbers}',mode='eval'),...indent=4,...))Expression( body=DictComp( key=Name(id='x', ctx=Load()), value=BinOp( left=Name(id='x', ctx=Load()), op=Pow(), right=Constant(value=2)), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), is_async=0)]))>>>print(ast.dump(...ast.parse('{x for x in numbers}',mode='eval'),...indent=4,...))Expression( body=SetComp( elt=Name(id='x', ctx=Load()), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), is_async=0)]))
- classast.comprehension(target,iter,ifs,is_async)¶
One
for
clause in a comprehension.target
is the reference to use foreach element - typically aName
orTuple
node.iter
is the object to iterate over.ifs
is a list of test expressions: eachfor
clause can have multipleifs
.is_async
indicates a comprehension is asynchronous (using anasyncfor
instead offor
). The value is an integer (0 or 1).>>>print(ast.dump(ast.parse('[ord(c) for line in file for c in line]',mode='eval'),...indent=4))# Multiple comprehensions in one.Expression( body=ListComp( elt=Call( func=Name(id='ord', ctx=Load()), args=[ Name(id='c', ctx=Load())]), generators=[ comprehension( target=Name(id='line', ctx=Store()), iter=Name(id='file', ctx=Load()), is_async=0), comprehension( target=Name(id='c', ctx=Store()), iter=Name(id='line', ctx=Load()), is_async=0)]))>>>print(ast.dump(ast.parse('(n**2 for n in it if n>5 if n<10)',mode='eval'),...indent=4))# generator comprehensionExpression( body=GeneratorExp( elt=BinOp( left=Name(id='n', ctx=Load()), op=Pow(), right=Constant(value=2)), generators=[ comprehension( target=Name(id='n', ctx=Store()), iter=Name(id='it', ctx=Load()), ifs=[ Compare( left=Name(id='n', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=5)]), Compare( left=Name(id='n', ctx=Load()), ops=[ Lt()], comparators=[ Constant(value=10)])], is_async=0)]))>>>print(ast.dump(ast.parse('[i async for i in soc]',mode='eval'),...indent=4))# Async comprehensionExpression( body=ListComp( elt=Name(id='i', ctx=Load()), generators=[ comprehension( target=Name(id='i', ctx=Store()), iter=Name(id='soc', ctx=Load()), is_async=1)]))
Statements¶
- classast.Assign(targets,value,type_comment)¶
An assignment.
targets
is a list of nodes, andvalue
is a single node.Multiple nodes in
targets
represents assigning the same value to each.Unpacking is represented by putting aTuple
orList
withintargets
.- type_comment¶
type_comment
is an optional string with the type annotation as a comment.
>>>print(ast.dump(ast.parse('a = b = 1'),indent=4))# Multiple assignmentModule( body=[ Assign( targets=[ Name(id='a', ctx=Store()), Name(id='b', ctx=Store())], value=Constant(value=1))])>>>print(ast.dump(ast.parse('a,b = c'),indent=4))# UnpackingModule( body=[ Assign( targets=[ Tuple( elts=[ Name(id='a', ctx=Store()), Name(id='b', ctx=Store())], ctx=Store())], value=Name(id='c', ctx=Load()))])
- classast.AnnAssign(target,annotation,value,simple)¶
An assignment with a type annotation.
target
is a single node and canbe aName
, anAttribute
or aSubscript
.annotation
is the annotation, such as aConstant
orName
node.value
is a single optional node.simple
is always either 0 (indicating a “complex” target) or 1(indicating a “simple” target). A “simple” target consists solely of aName
node that does not appear between parentheses; all othertargets are considered complex. Only simple targets appear inthe__annotations__
dictionary of modules and classes.>>>print(ast.dump(ast.parse('c: int'),indent=4))Module( body=[ AnnAssign( target=Name(id='c', ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=1)])>>>print(ast.dump(ast.parse('(a): int = 1'),indent=4))# Annotation with parenthesisModule( body=[ AnnAssign( target=Name(id='a', ctx=Store()), annotation=Name(id='int', ctx=Load()), value=Constant(value=1), simple=0)])>>>print(ast.dump(ast.parse('a.b: int'),indent=4))# Attribute annotationModule( body=[ AnnAssign( target=Attribute( value=Name(id='a', ctx=Load()), attr='b', ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=0)])>>>print(ast.dump(ast.parse('a[1]: int'),indent=4))# Subscript annotationModule( body=[ AnnAssign( target=Subscript( value=Name(id='a', ctx=Load()), slice=Constant(value=1), ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=0)])
- classast.AugAssign(target,op,value)¶
Augmented assignment, such as
a+=1
. In the following example,target
is aName
node forx
(with theStore
context),op
isAdd
, andvalue
is aConstant
withvalue for 1.The
target
attribute cannot be of classTuple
orList
,unlike the targets ofAssign
.>>>print(ast.dump(ast.parse('x += 2'),indent=4))Module( body=[ AugAssign( target=Name(id='x', ctx=Store()), op=Add(), value=Constant(value=2))])
- classast.Raise(exc,cause)¶
A
raise
statement.exc
is the exception object to be raised, normally aCall
orName
, orNone
for a standaloneraise
.cause
is the optional part fory
inraisexfromy
.>>>print(ast.dump(ast.parse('raise x from y'),indent=4))Module( body=[ Raise( exc=Name(id='x', ctx=Load()), cause=Name(id='y', ctx=Load()))])
- classast.Assert(test,msg)¶
An assertion.
test
holds the condition, such as aCompare
node.msg
holds the failure message.>>>print(ast.dump(ast.parse('assert x,y'),indent=4))Module( body=[ Assert( test=Name(id='x', ctx=Load()), msg=Name(id='y', ctx=Load()))])
- classast.Delete(targets)¶
Represents a
del
statement.targets
is a list of nodes, such asName
,Attribute
orSubscript
nodes.>>>print(ast.dump(ast.parse('del x,y,z'),indent=4))Module( body=[ Delete( targets=[ Name(id='x', ctx=Del()), Name(id='y', ctx=Del()), Name(id='z', ctx=Del())])])
- classast.Pass¶
A
pass
statement.>>>print(ast.dump(ast.parse('pass'),indent=4))Module( body=[ Pass()])
- classast.TypeAlias(name,type_params,value)¶
Atype alias created through the
type
statement.name
is the name of the alias,type_params
is a list oftype parameters, andvalue
is the value of thetype alias.>>>print(ast.dump(ast.parse('type Alias = int'),indent=4))Module( body=[ TypeAlias( name=Name(id='Alias', ctx=Store()), value=Name(id='int', ctx=Load()))])
Added in version 3.12.
Other statements which are only applicable inside functions or loops aredescribed in other sections.
Imports¶
- classast.Import(names)¶
An import statement.
names
is a list ofalias
nodes.>>>print(ast.dump(ast.parse('import x,y,z'),indent=4))Module( body=[ Import( names=[ alias(name='x'), alias(name='y'), alias(name='z')])])
- classast.ImportFrom(module,names,level)¶
Represents
fromximporty
.module
is a raw string of the ‘from’ name,without any leading dots, orNone
for statements such asfrom.importfoo
.level
is an integer holding the level of the relative import (0 meansabsolute import).>>>print(ast.dump(ast.parse('from y import x,y,z'),indent=4))Module( body=[ ImportFrom( module='y', names=[ alias(name='x'), alias(name='y'), alias(name='z')], level=0)])
- classast.alias(name,asname)¶
Both parameters are raw strings of the names.
asname
can beNone
ifthe regular name is to be used.>>>print(ast.dump(ast.parse('from ..foo.bar import a as b, c'),indent=4))Module( body=[ ImportFrom( module='foo.bar', names=[ alias(name='a', asname='b'), alias(name='c')], level=2)])
Control flow¶
Note
Optional clauses such aselse
are stored as an empty list if they’renot present.
- classast.If(test,body,orelse)¶
An
if
statement.test
holds a single node, such as aCompare
node.body
andorelse
each hold a list of nodes.elif
clauses don’t have a special representation in the AST, but ratherappear as extraIf
nodes within theorelse
section of theprevious one.>>>print(ast.dump(ast.parse("""...if x:... ......elif y:... ......else:... ......"""),indent=4))Module( body=[ If( test=Name(id='x', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ If( test=Name(id='y', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])])])
- classast.For(target,iter,body,orelse,type_comment)¶
A
for
loop.target
holds the variable(s) the loop assigns to, as asingleName
,Tuple
,List
,Attribute
orSubscript
node.iter
holds the item to be looped over, againas a single node.body
andorelse
contain lists of nodes to execute.Those inorelse
are executed if the loop finishes normally, rather thanvia abreak
statement.- type_comment¶
type_comment
is an optional string with the type annotation as a comment.
>>>print(ast.dump(ast.parse("""...for x in y:... ......else:... ......"""),indent=4))Module( body=[ For( target=Name(id='x', ctx=Store()), iter=Name(id='y', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])])
- classast.While(test,body,orelse)¶
A
while
loop.test
holds the condition, such as aCompare
node.>>>print(ast.dump(ast.parse("""...while x:... ......else:... ......"""),indent=4))Module( body=[ While( test=Name(id='x', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])])
- classast.Break¶
- classast.Continue¶
The
break
andcontinue
statements.>>>print(ast.dump(ast.parse("""\...for a in b:... if a > 5:... break... else:... continue......"""),indent=4))Module( body=[ For( target=Name(id='a', ctx=Store()), iter=Name(id='b', ctx=Load()), body=[ If( test=Compare( left=Name(id='a', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=5)]), body=[ Break()], orelse=[ Continue()])])])
- classast.Try(body,handlers,orelse,finalbody)¶
try
blocks. All attributes are list of nodes to execute, except forhandlers
, which is a list ofExceptHandler
nodes.>>>print(ast.dump(ast.parse("""...try:... ......except Exception:... ......except OtherException as e:... ......else:... ......finally:... ......"""),indent=4))Module( body=[ Try( body=[ Expr( value=Constant(value=Ellipsis))], handlers=[ ExceptHandler( type=Name(id='Exception', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))]), ExceptHandler( type=Name(id='OtherException', ctx=Load()), name='e', body=[ Expr( value=Constant(value=Ellipsis))])], orelse=[ Expr( value=Constant(value=Ellipsis))], finalbody=[ Expr( value=Constant(value=Ellipsis))])])
- classast.TryStar(body,handlers,orelse,finalbody)¶
try
blocks which are followed byexcept*
clauses. The attributes are thesame as forTry
but theExceptHandler
nodes inhandlers
are interpreted asexcept*
blocks rather thenexcept
.>>>print(ast.dump(ast.parse("""...try:... ......except* Exception:... ......"""),indent=4))Module( body=[ TryStar( body=[ Expr( value=Constant(value=Ellipsis))], handlers=[ ExceptHandler( type=Name(id='Exception', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.11.
- classast.ExceptHandler(type,name,body)¶
A single
except
clause.type
is the exception type it will match,typically aName
node (orNone
for a catch-allexcept:
clause).name
is a raw string for the name to hold the exception, orNone
ifthe clause doesn’t haveasfoo
.body
is a list of nodes.>>>print(ast.dump(ast.parse("""\...try:... a + 1...except TypeError:... pass..."""),indent=4))Module( body=[ Try( body=[ Expr( value=BinOp( left=Name(id='a', ctx=Load()), op=Add(), right=Constant(value=1)))], handlers=[ ExceptHandler( type=Name(id='TypeError', ctx=Load()), body=[ Pass()])])])
- classast.With(items,body,type_comment)¶
A
with
block.items
is a list ofwithitem
nodes representingthe context managers, andbody
is the indented block inside the context.- type_comment¶
type_comment
is an optional string with the type annotation as a comment.
- classast.withitem(context_expr,optional_vars)¶
A single context manager in a
with
block.context_expr
is the contextmanager, often aCall
node.optional_vars
is aName
,Tuple
orList
for theasfoo
part, orNone
if thatisn’t used.>>>print(ast.dump(ast.parse("""\...with a as b, c as d:... something(b, d)..."""),indent=4))Module( body=[ With( items=[ withitem( context_expr=Name(id='a', ctx=Load()), optional_vars=Name(id='b', ctx=Store())), withitem( context_expr=Name(id='c', ctx=Load()), optional_vars=Name(id='d', ctx=Store()))], body=[ Expr( value=Call( func=Name(id='something', ctx=Load()), args=[ Name(id='b', ctx=Load()), Name(id='d', ctx=Load())]))])])
Pattern matching¶
- classast.Match(subject,cases)¶
A
match
statement.subject
holds the subject of the match (the objectthat is being matched against the cases) andcases
contains an iterable ofmatch_case
nodes with the different cases.Added in version 3.10.
- classast.match_case(pattern,guard,body)¶
A single case pattern in a
match
statement.pattern
contains thematch pattern that the subject will be matched against. Note that theAST
nodes produced for patterns differ from those produced forexpressions, even when they share the same syntax.The
guard
attribute contains an expression that will be evaluated ifthe pattern matches the subject.body
contains a list of nodes to execute if the pattern matches andthe result of evaluating the guard expression is true.>>>print(ast.dump(ast.parse("""...match x:... case [x] if x>0:... ...... case tuple():... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSequence( patterns=[ MatchAs(name='x')]), guard=Compare( left=Name(id='x', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=0)]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchClass( cls=Name(id='tuple', ctx=Load())), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchValue(value)¶
A match literal or value pattern that compares by equality.
value
isan expression node. Permitted value nodes are restricted as described inthe match statement documentation. This pattern succeeds if the matchsubject is equal to the evaluated value.>>>print(ast.dump(ast.parse("""...match x:... case "Relevant":... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchValue( value=Constant(value='Relevant')), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchSingleton(value)¶
A match literal pattern that compares by identity.
value
is thesingleton to be compared against:None
,True
, orFalse
. Thispattern succeeds if the match subject is the given constant.>>>print(ast.dump(ast.parse("""...match x:... case None:... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSingleton(value=None), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchSequence(patterns)¶
A match sequence pattern.
patterns
contains the patterns to be matchedagainst the subject elements if the subject is a sequence. Matches a variablelength sequence if one of the subpatterns is aMatchStar
node, otherwisematches a fixed length sequence.>>>print(ast.dump(ast.parse("""...match x:... case [1, 2]:... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSequence( patterns=[ MatchValue( value=Constant(value=1)), MatchValue( value=Constant(value=2))]), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchStar(name)¶
Matches the rest of the sequence in a variable length match sequence pattern.If
name
is notNone
, a list containing the remaining sequenceelements is bound to that name if the overall sequence pattern is successful.>>>print(ast.dump(ast.parse("""...match x:... case [1, 2, *rest]:... ...... case [*_]:... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSequence( patterns=[ MatchValue( value=Constant(value=1)), MatchValue( value=Constant(value=2)), MatchStar(name='rest')]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchSequence( patterns=[ MatchStar()]), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchMapping(keys,patterns,rest)¶
A match mapping pattern.
keys
is a sequence of expression nodes.patterns
is a corresponding sequence of pattern nodes.rest
is anoptional name that can be specified to capture the remaining mapping elements.Permitted key expressions are restricted as described in the match statementdocumentation.This pattern succeeds if the subject is a mapping, all evaluated keyexpressions are present in the mapping, and the value corresponding to eachkey matches the corresponding subpattern. If
rest
is notNone
, a dictcontaining the remaining mapping elements is bound to that name if the overallmapping pattern is successful.>>>print(ast.dump(ast.parse("""...match x:... case {1: _, 2: _}:... ...... case {**rest}:... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchMapping( keys=[ Constant(value=1), Constant(value=2)], patterns=[ MatchAs(), MatchAs()]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchMapping(rest='rest'), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchClass(cls,patterns,kwd_attrs,kwd_patterns)¶
A match class pattern.
cls
is an expression giving the nominal class tobe matched.patterns
is a sequence of pattern nodes to be matched againstthe class defined sequence of pattern matching attributes.kwd_attrs
is asequence of additional attributes to be matched (specified as keyword argumentsin the class pattern),kwd_patterns
are the corresponding patterns(specified as keyword values in the class pattern).This pattern succeeds if the subject is an instance of the nominated class,all positional patterns match the corresponding class-defined attributes, andany specified keyword attributes match their corresponding pattern.
Note: classes may define a property that returns self in order to match apattern node against the instance being matched. Several builtin types arealso matched that way, as described in the match statement documentation.
>>>print(ast.dump(ast.parse("""...match x:... case Point2D(0, 0):... ...... case Point3D(x=0, y=0, z=0):... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchClass( cls=Name(id='Point2D', ctx=Load()), patterns=[ MatchValue( value=Constant(value=0)), MatchValue( value=Constant(value=0))]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchClass( cls=Name(id='Point3D', ctx=Load()), kwd_attrs=[ 'x', 'y', 'z'], kwd_patterns=[ MatchValue( value=Constant(value=0)), MatchValue( value=Constant(value=0)), MatchValue( value=Constant(value=0))]), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchAs(pattern,name)¶
A match “as-pattern”, capture pattern or wildcard pattern.
pattern
contains the match pattern that the subject will be matched against.If the pattern isNone
, the node represents a capture pattern (i.e abare name) and will always succeed.The
name
attribute contains the name that will be bound if the patternis successful. Ifname
isNone
,pattern
must also beNone
and the node represents the wildcard pattern.>>>print(ast.dump(ast.parse("""...match x:... case [x] as y:... ...... case _:... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchAs( pattern=MatchSequence( patterns=[ MatchAs(name='x')]), name='y'), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchAs(), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
- classast.MatchOr(patterns)¶
A match “or-pattern”. An or-pattern matches each of its subpatterns in turnto the subject, until one succeeds. The or-pattern is then deemed tosucceed. If none of the subpatterns succeed the or-pattern fails. The
patterns
attribute contains a list of match pattern nodes that will bematched against the subject.>>>print(ast.dump(ast.parse("""...match x:... case [x] | (y):... ......"""),indent=4))Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchOr( patterns=[ MatchSequence( patterns=[ MatchAs(name='x')]), MatchAs(name='y')]), body=[ Expr( value=Constant(value=Ellipsis))])])])
Added in version 3.10.
Type annotations¶
- classast.TypeIgnore(lineno,tag)¶
A
#type:ignore
comment located atlineno.tag is the optional tag specified by the form#type:ignore<tag>
.>>>print(ast.dump(ast.parse('x = 1 # type: ignore',type_comments=True),indent=4))Module( body=[ Assign( targets=[ Name(id='x', ctx=Store())], value=Constant(value=1))], type_ignores=[ TypeIgnore(lineno=1, tag='')])>>>print(ast.dump(ast.parse('x: bool = 1 # type: ignore[assignment]',type_comments=True),indent=4))Module( body=[ AnnAssign( target=Name(id='x', ctx=Store()), annotation=Name(id='bool', ctx=Load()), value=Constant(value=1), simple=1)], type_ignores=[ TypeIgnore(lineno=1, tag='[assignment]')])
Note
TypeIgnore
nodes are not generated when thetype_comments parameteris set toFalse
(default). Seeast.parse()
for more details.Added in version 3.8.
Type parameters¶
Type parameters can exist on classes, functions, and typealiases.
- classast.TypeVar(name,bound,default_value)¶
A
typing.TypeVar
.name
is the name of the type variable.bound
is the bound or constraints, if any. Ifbound
is aTuple
,it represents constraints; otherwise it represents the bound.default_value
is the default value; if theTypeVar
has no default, thisattribute will be set toNone
.>>>print(ast.dump(ast.parse("type Alias[T: int = bool] = list[T]"),indent=4))Module( body=[ TypeAlias( name=Name(id='Alias', ctx=Store()), type_params=[ TypeVar( name='T', bound=Name(id='int', ctx=Load()), default_value=Name(id='bool', ctx=Load()))], value=Subscript( value=Name(id='list', ctx=Load()), slice=Name(id='T', ctx=Load()), ctx=Load()))])
Added in version 3.12.
Changed in version 3.13:Added thedefault_value parameter.
- classast.ParamSpec(name,default_value)¶
A
typing.ParamSpec
.name
is the name of the parameter specification.default_value
is the default value; if theParamSpec
has no default,this attribute will be set toNone
.>>>print(ast.dump(ast.parse("type Alias[**P = [int, str]] = Callable[P, int]"),indent=4))Module( body=[ TypeAlias( name=Name(id='Alias', ctx=Store()), type_params=[ ParamSpec( name='P', default_value=List( elts=[ Name(id='int', ctx=Load()), Name(id='str', ctx=Load())], ctx=Load()))], value=Subscript( value=Name(id='Callable', ctx=Load()), slice=Tuple( elts=[ Name(id='P', ctx=Load()), Name(id='int', ctx=Load())], ctx=Load()), ctx=Load()))])
Added in version 3.12.
Changed in version 3.13:Added thedefault_value parameter.
- classast.TypeVarTuple(name,default_value)¶
A
typing.TypeVarTuple
.name
is the name of the type variable tuple.default_value
is the default value; if theTypeVarTuple
has nodefault, this attribute will be set toNone
.>>>print(ast.dump(ast.parse("type Alias[*Ts = ()] = tuple[*Ts]"),indent=4))Module( body=[ TypeAlias( name=Name(id='Alias', ctx=Store()), type_params=[ TypeVarTuple( name='Ts', default_value=Tuple(ctx=Load()))], value=Subscript( value=Name(id='tuple', ctx=Load()), slice=Tuple( elts=[ Starred( value=Name(id='Ts', ctx=Load()), ctx=Load())], ctx=Load()), ctx=Load()))])
Added in version 3.12.
Changed in version 3.13:Added thedefault_value parameter.
Function and class definitions¶
- classast.FunctionDef(name,args,body,decorator_list,returns,type_comment,type_params)¶
A function definition.
name
is a raw string of the function name.args
is anarguments
node.body
is the list of nodes inside the function.decorator_list
is the list of decorators to be applied, stored outermostfirst (i.e. the first in the list will be applied last).returns
is the return annotation.type_params
is a list oftype parameters.
- type_comment¶
type_comment
is an optional string with the type annotation as a comment.
Changed in version 3.12:Added
type_params
.
- classast.Lambda(args,body)¶
lambda
is a minimal function definition that can be used inside anexpression. UnlikeFunctionDef
,body
holds a single node.>>>print(ast.dump(ast.parse('lambda x,y: ...'),indent=4))Module( body=[ Expr( value=Lambda( args=arguments( args=[ arg(arg='x'), arg(arg='y')]), body=Constant(value=Ellipsis)))])
- classast.arguments(posonlyargs,args,vararg,kwonlyargs,kw_defaults,kwarg,defaults)¶
The arguments for a function.
posonlyargs
,args
andkwonlyargs
are lists ofarg
nodes.vararg
andkwarg
are singlearg
nodes, referring to the*args,**kwargs
parameters.kw_defaults
is a list of default values for keyword-only arguments. Ifone isNone
, the corresponding argument is required.defaults
is a list of default values for arguments that can be passedpositionally. If there are fewer defaults, they correspond to the last narguments.
- classast.arg(arg,annotation,type_comment)¶
A single argument in a list.
arg
is a raw string of the argumentname;annotation
is its annotation, such as aName
node.- type_comment¶
type_comment
is an optional string with the type annotation as a comment
>>>print(ast.dump(ast.parse("""\...@decorator1...@decorator2...def f(a: 'annotation', b=1, c=2, *d, e, f=3, **g) -> 'return annotation':... pass..."""),indent=4))Module( body=[ FunctionDef( name='f', args=arguments( args=[ arg( arg='a', annotation=Constant(value='annotation')), arg(arg='b'), arg(arg='c')], vararg=arg(arg='d'), kwonlyargs=[ arg(arg='e'), arg(arg='f')], kw_defaults=[ None, Constant(value=3)], kwarg=arg(arg='g'), defaults=[ Constant(value=1), Constant(value=2)]), body=[ Pass()], decorator_list=[ Name(id='decorator1', ctx=Load()), Name(id='decorator2', ctx=Load())], returns=Constant(value='return annotation'))])
- classast.Return(value)¶
A
return
statement.>>>print(ast.dump(ast.parse('return 4'),indent=4))Module( body=[ Return( value=Constant(value=4))])
- classast.Yield(value)¶
- classast.YieldFrom(value)¶
A
yield
oryieldfrom
expression. Because these are expressions, theymust be wrapped in anExpr
node if the value sent back is not used.>>>print(ast.dump(ast.parse('yield x'),indent=4))Module( body=[ Expr( value=Yield( value=Name(id='x', ctx=Load())))])>>>print(ast.dump(ast.parse('yield from x'),indent=4))Module( body=[ Expr( value=YieldFrom( value=Name(id='x', ctx=Load())))])
- classast.Global(names)¶
- classast.Nonlocal(names)¶
global
andnonlocal
statements.names
is a list of raw strings.>>>print(ast.dump(ast.parse('global x,y,z'),indent=4))Module( body=[ Global( names=[ 'x', 'y', 'z'])])>>>print(ast.dump(ast.parse('nonlocal x,y,z'),indent=4))Module( body=[ Nonlocal( names=[ 'x', 'y', 'z'])])
- classast.ClassDef(name,bases,keywords,body,decorator_list,type_params)¶
A class definition.
name
is a raw string for the class namebases
is a list of nodes for explicitly specified base classes.keywords
is a list ofkeyword
nodes, principally for ‘metaclass’.Other keywords will be passed to the metaclass, as perPEP 3115.body
is a list of nodes representing the code within the classdefinition.decorator_list
is a list of nodes, as inFunctionDef
.type_params
is a list oftype parameters.
>>>print(ast.dump(ast.parse("""\...@decorator1...@decorator2...class Foo(base1, base2, metaclass=meta):... pass..."""),indent=4))Module( body=[ ClassDef( name='Foo', bases=[ Name(id='base1', ctx=Load()), Name(id='base2', ctx=Load())], keywords=[ keyword( arg='metaclass', value=Name(id='meta', ctx=Load()))], body=[ Pass()], decorator_list=[ Name(id='decorator1', ctx=Load()), Name(id='decorator2', ctx=Load())])])
Changed in version 3.12:Added
type_params
.
Async and await¶
- classast.AsyncFunctionDef(name,args,body,decorator_list,returns,type_comment,type_params)¶
An
asyncdef
function definition. Has the same fields asFunctionDef
.Changed in version 3.12:Added
type_params
.
- classast.Await(value)¶
An
await
expression.value
is what it waits for.Only valid in the body of anAsyncFunctionDef
.
>>>print(ast.dump(ast.parse("""\...async def f():... await other_func()..."""),indent=4))Module( body=[ AsyncFunctionDef( name='f', args=arguments(), body=[ Expr( value=Await( value=Call( func=Name(id='other_func', ctx=Load()))))])])
- classast.AsyncFor(target,iter,body,orelse,type_comment)¶
- classast.AsyncWith(items,body,type_comment)¶
asyncfor
loops andasyncwith
context managers. They have the samefields asFor
andWith
, respectively. Only valid in thebody of anAsyncFunctionDef
.
Note
When a string is parsed byast.parse()
, operator nodes (subclassesofast.operator
,ast.unaryop
,ast.cmpop
,ast.boolop
andast.expr_context
) on the returned treewill be singletons. Changes to one will be reflected in all otheroccurrences of the same value (e.g.ast.Add
).
ast
Helpers¶
Apart from the node classes, theast
module defines these utility functionsand classes for traversing abstract syntax trees:
- ast.parse(source,filename='<unknown>',mode='exec',*,type_comments=False,feature_version=None,optimize=-1)¶
Parse the source into an AST node. Equivalent to
compile(source,filename,mode,flags=FLAGS_VALUE,optimize=optimize)
,whereFLAGS_VALUE
isast.PyCF_ONLY_AST
ifoptimize<=0
andast.PyCF_OPTIMIZED_AST
otherwise.If
type_comments=True
is given, the parser is modified to checkand return type comments as specified byPEP 484 andPEP 526.This is equivalent to addingast.PyCF_TYPE_COMMENTS
to theflags passed tocompile()
. This will report syntax errorsfor misplaced type comments. Without this flag, type comments willbe ignored, and thetype_comment
field on selected AST nodeswill always beNone
. In addition, the locations of#type:ignore
comments will be returned as thetype_ignores
attribute ofModule
(otherwise it is always an empty list).In addition, if
mode
is'func_type'
, the input syntax ismodified to correspond toPEP 484 “signature type comments”,e.g.(str,int)->List[str]
.Setting
feature_version
to a tuple(major,minor)
will result ina “best-effort” attempt to parse using that Python version’s grammar.For example, settingfeature_version=(3,9)
will attempt to disallowparsing ofmatch
statements.Currentlymajor
must equal to3
. The lowest supported version is(3,7)
(and this may increase in future Python versions);the highest issys.version_info[0:2]
. “Best-effort” attempt means thereis no guarantee that the parse (or success of the parse) is the same aswhen run on the Python version corresponding tofeature_version
.If source contains a null character (
\0
),ValueError
is raised.Warning
Note that successfully parsing source code into an AST object doesn’tguarantee that the source code provided is valid Python code that canbe executed as the compilation step can raise further
SyntaxError
exceptions. For instance, the sourcereturn42
generates a validAST node for a return statement, but it cannot be compiled alone (it needsto be inside a function node).In particular,
ast.parse()
won’t do any scoping checks, which thecompilation step does.Warning
It is possible to crash the Python interpreter with asufficiently large/complex string due to stack depth limitationsin Python’s AST compiler.
Changed in version 3.8:Added
type_comments
,mode='func_type'
andfeature_version
.Changed in version 3.13:The minimum supported version for
feature_version
is now(3,7)
.Theoptimize
argument was added.
- ast.unparse(ast_obj)¶
Unparse an
ast.AST
object and generate a string with codethat would produce an equivalentast.AST
object if parsedback withast.parse()
.Warning
The produced code string will not necessarily be equal to the originalcode that generated the
ast.AST
object (without any compileroptimizations, such as constant tuples/frozensets).Warning
Trying to unparse a highly complex expression would result with
RecursionError
.Added in version 3.9.
- ast.literal_eval(node_or_string)¶
Evaluate an expression node or a string containing only a Python literal orcontainer display. The string or node provided may only consist of thefollowing Python literal structures: strings, bytes, numbers, tuples, lists,dicts, sets, booleans,
None
andEllipsis
.This can be used for evaluating strings containing Python values without theneed to parse the values oneself. It is not capable of evaluatingarbitrarily complex expressions, for example involving operators orindexing.
This function had been documented as “safe” in the past without definingwhat that meant. That was misleading. This is specifically designed not toexecute Python code, unlike the more general
eval()
. There is nonamespace, no name lookups, or ability to call out. But it is not free fromattack: A relatively small input can lead to memory exhaustion or to C stackexhaustion, crashing the process. There is also the possibility forexcessive CPU consumption denial of service on some inputs. Calling it onuntrusted data is thus not recommended.Warning
It is possible to crash the Python interpreter due to stack depthlimitations in Python’s AST compiler.
It can raise
ValueError
,TypeError
,SyntaxError
,MemoryError
andRecursionError
depending on the malformedinput.Changed in version 3.2:Now allows bytes and set literals.
Changed in version 3.9:Now supports creating empty sets with
'set()'
.Changed in version 3.10:For string inputs, leading spaces and tabs are now stripped.
- ast.get_docstring(node,clean=True)¶
Return the docstring of the givennode (which must be a
FunctionDef
,AsyncFunctionDef
,ClassDef
,orModule
node), orNone
if it has no docstring.Ifclean is true, clean up the docstring’s indentation withinspect.cleandoc()
.Changed in version 3.5:
AsyncFunctionDef
is now supported.
- ast.get_source_segment(source,node,*,padded=False)¶
Get source code segment of thesource that generatednode.If some location information (
lineno
,end_lineno
,col_offset
, orend_col_offset
) is missing, returnNone
.Ifpadded is
True
, the first line of a multi-line statement willbe padded with spaces to match its original position.Added in version 3.8.
- ast.fix_missing_locations(node)¶
When you compile a node tree with
compile()
, the compiler expectslineno
andcol_offset
attributes for every node that supportsthem. This is rather tedious to fill in for generated nodes, so this helperadds these attributes recursively where not already set, by setting them tothe values of the parent node. It works recursively starting atnode.
- ast.increment_lineno(node,n=1)¶
Increment the line number and end line number of each node in the treestarting atnode byn. This is useful to “move code” to a differentlocation in a file.
- ast.copy_location(new_node,old_node)¶
Copy source location (
lineno
,col_offset
,end_lineno
,andend_col_offset
) fromold_node tonew_node if possible,and returnnew_node.
- ast.iter_fields(node)¶
Yield a tuple of
(fieldname,value)
for each field innode._fields
that is present onnode.
- ast.iter_child_nodes(node)¶
Yield all direct child nodes ofnode, that is, all fields that are nodesand all items of fields that are lists of nodes.
- ast.walk(node)¶
Recursively yield all descendant nodes in the tree starting atnode(includingnode itself), in no specified order. This is useful if you onlywant to modify nodes in place and don’t care about the context.
- classast.NodeVisitor¶
A node visitor base class that walks the abstract syntax tree and calls avisitor function for every node found. This function may return a valuewhich is forwarded by the
visit()
method.This class is meant to be subclassed, with the subclass adding visitormethods.
- visit(node)¶
Visit a node. The default implementation calls the method called
self.visit_classname
whereclassname is the name of the nodeclass, orgeneric_visit()
if that method doesn’t exist.
- generic_visit(node)¶
This visitor calls
visit()
on all children of the node.Note that child nodes of nodes that have a custom visitor method won’t bevisited unless the visitor calls
generic_visit()
or visits themitself.
- visit_Constant(node)¶
Handles all constant nodes.
Don’t use the
NodeVisitor
if you want to apply changes to nodesduring traversal. For this a special visitor exists(NodeTransformer
) that allows modifications.Deprecated since version 3.8:Methods
visit_Num()
,visit_Str()
,visit_Bytes()
,visit_NameConstant()
andvisit_Ellipsis()
are deprecatednow and will not be called in future Python versions. Add thevisit_Constant()
method to handle all constant nodes.
- classast.NodeTransformer¶
A
NodeVisitor
subclass that walks the abstract syntax tree andallows modification of nodes.The
NodeTransformer
will walk the AST and use the return value ofthe visitor methods to replace or remove the old node. If the return valueof the visitor method isNone
, the node will be removed from itslocation, otherwise it is replaced with the return value. The return valuemay be the original node in which case no replacement takes place.Here is an example transformer that rewrites all occurrences of name lookups(
foo
) todata['foo']
:classRewriteName(NodeTransformer):defvisit_Name(self,node):returnSubscript(value=Name(id='data',ctx=Load()),slice=Constant(value=node.id),ctx=node.ctx)
Keep in mind that if the node you’re operating on has child nodes you musteither transform the child nodes yourself or call the
generic_visit()
method for the node first.For nodes that were part of a collection of statements (that applies to allstatement nodes), the visitor may also return a list of nodes rather thanjust a single node.
If
NodeTransformer
introduces new nodes (that weren’t part oforiginal tree) without giving them location information (such aslineno
),fix_missing_locations()
should be called withthe new sub-tree to recalculate the location information:tree=ast.parse('foo',mode='eval')new_tree=fix_missing_locations(RewriteName().visit(tree))
Usually you use the transformer like this:
node=YourTransformer().visit(node)
- ast.dump(node,annotate_fields=True,include_attributes=False,*,indent=None,show_empty=False)¶
Return a formatted dump of the tree innode. This is mainly useful fordebugging purposes. Ifannotate_fields is true (by default),the returned string will show the names and the values for fields.Ifannotate_fields is false, the result string will be more compact byomitting unambiguous field names. Attributes such as linenumbers and column offsets are not dumped by default. If this is wanted,include_attributes can be set to true.
Ifindent is a non-negative integer or string, then the tree will bepretty-printed with that indent level. An indent levelof 0, negative, or
""
will only insert newlines.None
(the default)selects the single line representation. Using a positive integer indentindents that many spaces per level. Ifindent is a string (such as"\t"
),that string is used to indent each level.Ifshow_empty is
False
(the default), empty lists and fields that areNone
will be omitted from the output.Changed in version 3.9:Added theindent option.
Changed in version 3.13:Added theshow_empty option.
>>>print(ast.dump(ast.parse("""\...async def f():... await other_func()..."""),indent=4,show_empty=True))Module( body=[ AsyncFunctionDef( name='f', args=arguments( posonlyargs=[], args=[], kwonlyargs=[], kw_defaults=[], defaults=[]), body=[ Expr( value=Await( value=Call( func=Name(id='other_func', ctx=Load()), args=[], keywords=[])))], decorator_list=[], type_params=[])], type_ignores=[])
Compiler Flags¶
The following flags may be passed tocompile()
in order to changeeffects on the compilation of a program:
- ast.PyCF_ALLOW_TOP_LEVEL_AWAIT¶
Enables support for top-level
await
,asyncfor
,asyncwith
and async comprehensions.Added in version 3.8.
- ast.PyCF_ONLY_AST¶
Generates and returns an abstract syntax tree instead of returning acompiled code object.
- ast.PyCF_OPTIMIZED_AST¶
The returned AST is optimized according to theoptimize argumentin
compile()
orast.parse()
.Added in version 3.13.
Command-Line Usage¶
Added in version 3.9.
Theast
module can be executed as a script from the command line.It is as simple as:
python-mast[-m<mode>][-a][infile]
The following options are accepted:
- -h,--help¶
Show the help message and exit.
- --no-type-comments¶
Don’t parse type comments.
- -a,--include-attributes¶
Include attributes such as line numbers and column offsets.
Ifinfile
is specified its contents are parsed to AST and dumpedto stdout. Otherwise, the content is read from stdin.
See also
Green Tree Snakes, an externaldocumentation resource, has good details on working with Python ASTs.
ASTTokensannotates Python ASTs with the positions of tokens and text in the sourcecode that generated them. This is helpful for tools that make source codetransformations.
leoAst.pyunifies thetoken-based and parse-tree-based views of python programs by insertingtwo-way links between tokens and ast nodes.
LibCST parses code as a Concrete SyntaxTree that looks like an ast tree and keeps all formatting details. It’suseful for building automated refactoring (codemod) applications andlinters.
Parso is a Python parser that supportserror recovery and round-trip parsing for different Python versions (inmultiple Python versions). Parso is also able to list multiple syntax errorsin your Python file.