Movatterモバイル変換


[0]ホーム

URL:


ContentsMenuExpandLight modeDark modeAuto light/dark, in light modeAuto light/dark, in dark modeSkip to content
NVIDIA TensorRT Standard Python API Documentation 10.14.1
Light LogoDark Logo
NVIDIA TensorRT Standard Python API Documentation 10.14.1

Overview

TensorRT Python API Reference

Back to top

Core Concepts

TensorRT Workflow

The general TensorRT workflow consists of 3 steps:

  1. Populate atensorrt.INetworkDefinition either with a parser or by using the TensorRT Network API (seetensorrt.INetworkDefinition for more details). Thetensorrt.Builder can be used to generate an emptytensorrt.INetworkDefinition .

  2. Use thetensorrt.Builder to build atensorrt.ICudaEngine using the populatedtensorrt.INetworkDefinition .

  3. Create atensorrt.IExecutionContext from thetensorrt.ICudaEngine and use it to perform optimized inference.

Classes Overview

Logger

Most other TensorRT classes use a logger to report errors, warnings and informative messages. TensorRT provides a basictensorrt.Logger implementation, but you can write your own implementation by deriving fromtensorrt.ILogger for more advanced functionality.

Parsers

Parsers are used to populate atensorrt.INetworkDefinition from a model trained in a Deep Learning framework.

Network

Thetensorrt.INetworkDefinition represents a computational graph. In order to populate the network, TensorRT provides a suite of parsers for a variety of Deep Learning frameworks. It is also possible to populate the network manually using the Network API.

Builder

Thetensorrt.Builder is used to build atensorrt.ICudaEngine . In order to do so, it must be provided a populatedtensorrt.INetworkDefinition .

Engine and Context

Thetensorrt.ICudaEngine is the output of the TensorRT optimizer. It is used to generate atensorrt.IExecutionContext that can perform inference.

On this page

[8]ページ先頭

©2009-2025 Movatter.jp