A type tree for all subtypes ofNumber inBase is shown below. Abstract types have been marked, the rest are concrete types.
Number (Abstract Type)├─ Complex└─ Real (Abstract Type) ├─ AbstractFloat (Abstract Type) │ ├─ Float16 │ ├─ Float32 │ ├─ Float64 │ └─ BigFloat ├─ Integer (Abstract Type) │ ├─ Bool │ ├─ Signed (Abstract Type) │ │ ├─ Int8 │ │ ├─ Int16 │ │ ├─ Int32 │ │ ├─ Int64 │ │ ├─ Int128 │ │ └─ BigInt │ └─ Unsigned (Abstract Type) │ ├─ UInt8 │ ├─ UInt16 │ ├─ UInt32 │ ├─ UInt64 │ └─ UInt128 ├─ Rational └─ AbstractIrrational (Abstract Type) └─ IrrationalCore.Number —TypeCore.AbstractFloat —TypeCore.Signed —TypeCore.Unsigned —TypeUnsigned <: IntegerAbstract supertype for all unsigned integers.
Built-in unsigned integers are printed in hexadecimal, with prefix0x, and can be entered in the same way.
Examples
julia> typemax(UInt8)0xffjulia> Int(0x00d)13julia> unsigned(true)0x0000000000000001sourceBase.AbstractIrrational —TypeAbstractIrrational <: RealNumber type representing an exact irrational value, which is automatically rounded to the correct precision in arithmetic operations with other numeric quantities.
SubtypesMyIrrational <: AbstractIrrational should implement at least==(::MyIrrational, ::MyIrrational),hash(x::MyIrrational, h::UInt), andconvert(::Type{F}, x::MyIrrational) where {F <: Union{BigFloat,Float32,Float64}}.
If a subtype is used to represent values that may occasionally be rational (e.g. a square-root type that represents√n for integersn will give a rational result whenn is a perfect square), then it should also implementisinteger,iszero,isone, and== withReal values (since all of these default tofalse forAbstractIrrational types), as well as defininghash to equal that of the correspondingRational.
Core.Float16 —TypeFloat16 <: AbstractFloat <: Real16-bit floating point number type (IEEE 754 standard). Binary format is 1 sign, 5 exponent, 10 fraction bits.
sourceCore.Float32 —TypeFloat32 <: AbstractFloat <: Real32-bit floating point number type (IEEE 754 standard). Binary format is 1 sign, 8 exponent, 23 fraction bits.
The exponent for scientific notation should be entered as lower-casef, thus2f3 === 2.0f0 * 10^3 === Float32(2_000). For array literals and comprehensions, the element type can be specified before the square brackets:Float32[1,4,9] == Float32[i^2 for i in 1:3].
See alsoInf32,NaN32,Float16,exponent,frexp.
Core.Float64 —TypeFloat64 <: AbstractFloat <: Real64-bit floating point number type (IEEE 754 standard). Binary format is 1 sign, 11 exponent, 52 fraction bits. Seebitstring,signbit,exponent,frexp, andsignificand to access various bits.
This is the default for floating point literals,1.0 isa Float64, and for many operations such as1/2, 2pi, log(2), range(0,90,length=4). Unlike integers, this default does not change withSys.WORD_SIZE.
The exponent for scientific notation can be entered ase orE, thus2e3 === 2.0E3 === 2.0 * 10^3. Doing so is strongly preferred over10^n because integers overflow, thus2.0 * 10^19 < 0 but2e19 > 0.
See alsoInf,NaN,floatmax,Float32,Complex.
Base.MPFR.BigFloat —TypeCore.Bool —TypeBool <: IntegerBoolean type, containing the valuestrue andfalse.
Bool is a kind of number:false is numerically equal to0 andtrue is numerically equal to1. Moreover,false acts as a multiplicative "strong zero" againstNaN andInf:
julia> [true, false] == [1, 0]truejulia> 42.0 + true43.0julia> 0 .* (NaN, Inf, -Inf)(NaN, NaN, NaN)julia> false .* (NaN, Inf, -Inf)(0.0, 0.0, -0.0)Branches viaif and other conditionals only acceptBool. There are no "truthy" values in Julia.
Comparisons typically returnBool, and broadcasted comparisons may returnBitArray instead of anArray{Bool}.
julia> [1 2 3 4 5] .< pi1×5 BitMatrix: 1 1 1 0 0julia> map(>(pi), [1 2 3 4 5])1×5 Matrix{Bool}: 0 0 0 1 1sourceCore.UInt8 —TypeUInt8 <: Unsigned <: Integer8-bit unsigned integer type.
Printed in hexadecimal, thus 0x07 == 7.
sourceCore.Int16 —TypeCore.UInt16 —TypeUInt16 <: Unsigned <: Integer16-bit unsigned integer type.
Printed in hexadecimal, thus 0x000f == 15.
sourceCore.Int32 —TypeCore.UInt32 —TypeUInt32 <: Unsigned <: Integer32-bit unsigned integer type.
Printed in hexadecimal, thus 0x0000001f == 31.
sourceCore.Int64 —TypeCore.UInt64 —TypeUInt64 <: Unsigned <: Integer64-bit unsigned integer type.
Printed in hexadecimal, thus 0x000000000000003f == 63.
sourceCore.Int128 —TypeCore.UInt128 —TypeUInt128 <: Unsigned <: Integer128-bit unsigned integer type.
Printed in hexadecimal, thus 0x0000000000000000000000000000007f == 127.
sourceCore.Int —TypeIntSys.WORD_SIZE-bit signed integer type,Int <: Signed <: Integer <: Real.
This is the default type of most integer literals and is an alias for eitherInt32 orInt64, depending onSys.WORD_SIZE. It is the type returned by functions such aslength, and the standard type for indexing arrays.
Note that integers overflow without warning, thustypemax(Int) + 1 < 0 and10^19 < 0. Overflow can be avoided by usingBigInt. Very large integer literals will use a wider type, for instance10_000_000_000_000_000_000 isa Int128.
Integer division isdiv alias÷, whereas/ acting on integers returnsFloat64.
See alsoInt64,widen,typemax,bitstring.
Base.GMP.BigInt —TypeBase.Complex —TypeBase.Rational —TypeRational{T<:Integer} <: RealRational number type, with numerator and denominator of typeT. Rationals are checked for overflow.
Base.Irrational —TypeIrrational{sym} <: AbstractIrrationalNumber type representing an exact irrational value denoted by the symbolsym, such asπ,ℯ andγ.
See alsoAbstractIrrational.
Base.digits —Functiondigits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1)Return an array with element typeT (defaultInt) of the digits ofn in the given base, optionally padded with zeros to a specified size. More significant digits are at higher indices, such thatn == sum(digits[k]*base^(k-1) for k in 1:length(digits)).
See alsondigits,digits!, and for base 2 alsobitstring,count_ones.
Examples
julia> digits(10)2-element Vector{Int64}: 0 1julia> digits(10, base = 2)4-element Vector{Int64}: 0 1 0 1julia> digits(-256, base = 10, pad = 5)5-element Vector{Int64}: -6 -5 -2 0 0julia> n = rand(-999:999);julia> n == evalpoly(13, digits(n, base = 13))truesourceBase.digits! —Functiondigits!(array, n::Integer; base::Integer = 10)Fills an array of the digits ofn in the given base. More significant digits are at higher indices. If the array length is insufficient, the least significant digits are filled up to the array length. If the array length is excessive, the excess portion is filled with zeros.
Examples
julia> digits!([2, 2, 2, 2], 10, base = 2)4-element Vector{Int64}: 0 1 0 1julia> digits!([2, 2, 2, 2, 2, 2], 10, base = 2)6-element Vector{Int64}: 0 1 0 1 0 0sourceBase.bitstring —Functionbitstring(n)A string giving the literal bit representation of a primitive type (in bigendian order, i.e. most-significant bit first).
See alsocount_ones,count_zeros,digits.
Examples
julia> bitstring(Int32(4))"00000000000000000000000000000100"julia> bitstring(2.2)"0100000000000001100110011001100110011001100110011001100110011010"sourceBase.parse —Functionparse(::Type{SimpleColor}, rgb::String)An analogue oftryparse(SimpleColor, rgb::String) (which see), that raises an error instead of returningnothing.
parse(::Type{Platform}, triplet::AbstractString)Parses a string platform triplet back into aPlatform object.
parse(type, str; base)Parse a string as a number. ForInteger types, a base can be specified (the default is 10). For floating-point types, the string is parsed as a decimal floating-point number.Complex types are parsed from decimal strings of the form"R±Iim" as aComplex(R,I) of the requested type;"i" or"j" can also be used instead of"im", and"R" or"Iim" are also permitted. If the string does not contain a valid number, an error is raised.
Examples
julia> parse(Int, "1234")1234julia> parse(Int, "1234", base = 5)194julia> parse(Int, "afc", base = 16)2812julia> parse(Float64, "1.2e-3")0.0012julia> parse(Complex{Float64}, "3.2e-1 + 4.5im")0.32 + 4.5imsourceBase.tryparse —Functiontryparse(::Type{SimpleColor}, rgb::String)Attempt to parsergb as aSimpleColor. Ifrgb starts with# and has a length of 7, it is converted into aRGBTuple-backedSimpleColor. Ifrgb starts witha-z,rgb is interpreted as a color name and converted to aSymbol-backedSimpleColor.
Otherwise,nothing is returned.
Examples
julia> tryparse(SimpleColor, "blue")SimpleColor(blue)julia> tryparse(SimpleColor, "#9558b2")SimpleColor(#9558b2)julia> tryparse(SimpleColor, "#nocolor")Base.signed —Functionsigned(x)Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as signed without checking for overflow.
See also:unsigned,sign,signbit.
signed(T::Integer)Convert an integer bitstype to the signed type of the same size.
Examples
julia> signed(UInt16)Int16julia> signed(UInt64)Int64sourceBase.unsigned —Functionunsigned(T::Integer)Convert an integer bitstype to the unsigned type of the same size.
Examples
julia> unsigned(Int16)UInt16julia> unsigned(UInt64)UInt64sourceBase.float —MethodBase.Math.significand —Functionsignificand(x)Extract the significand (a.k.a. mantissa) of a floating-point number. Ifx is a non-zero finite number, then the result will be a number of the same type and sign asx, and whose absolute value is on the interval$[1,2)$. Otherwisex is returned.
Examples
julia> significand(15.2)1.9julia> significand(-15.2)-1.9julia> significand(-15.2) * 2^3-15.2julia> significand(-Inf), significand(Inf), significand(NaN)(-Inf, Inf, NaN)sourceBase.Math.exponent —Functionexponent(x::Real) -> IntReturn the largest integery such that2^y ≤ abs(x). For a normalized floating-point numberx, this corresponds to the exponent ofx.
Throws aDomainError whenx is zero, infinite, orNaN. For any other non-subnormal floating-point numberx, this corresponds to the exponent bits ofx.
See alsosignbit,significand,frexp,issubnormal,log2,ldexp.
Examples
julia> exponent(8)3julia> exponent(6.5)2julia> exponent(-1//4)-2julia> exponent(3.142e-4)-12julia> exponent(floatmin(Float32)), exponent(nextfloat(0.0f0))(-126, -149)julia> exponent(0.0)ERROR: DomainError with 0.0:Cannot be ±0.0.[...]sourceBase.complex —Methodcomplex(r, [i])Convert real numbers or arrays to complex.i defaults to zero.
Examples
julia> complex(7)7 + 0imjulia> complex([1, 2, 3])3-element Vector{Complex{Int64}}: 1 + 0im 2 + 0im 3 + 0imsourceBase.bswap —Functionbswap(n)Reverse the byte order ofn.
(See alsontoh andhton to convert between the current native byte order and big-endian order.)
Examples
julia> a = bswap(0x10203040)0x40302010julia> bswap(a)0x10203040julia> string(1, base = 2)"1"julia> string(bswap(1), base = 2)"100000000000000000000000000000000000000000000000000000000"sourceBase.hex2bytes —Functionhex2bytes(itr)Given an iterableitr of ASCII codes for a sequence of hexadecimal digits, returns aVector{UInt8} of bytes corresponding to the binary representation: each successive pair of hexadecimal digits initr gives the value of one byte in the return vector.
The length ofitr must be even, and the returned array has half of the length ofitr. See alsohex2bytes! for an in-place version, andbytes2hex for the inverse.
Callinghex2bytes with iterators producingUInt8 values requires Julia 1.7 or later. In earlier versions, you cancollect the iterator before callinghex2bytes.
Examples
julia> s = string(12345, base = 16)"3039"julia> hex2bytes(s)2-element Vector{UInt8}: 0x30 0x39julia> a = b"01abEF"6-element Base.CodeUnits{UInt8, String}: 0x30 0x31 0x61 0x62 0x45 0x46julia> hex2bytes(a)3-element Vector{UInt8}: 0x01 0xab 0xefsourceBase.hex2bytes! —Functionhex2bytes!(dest::AbstractVector{UInt8}, itr)Convert an iterableitr of bytes representing a hexadecimal string to its binary representation, similar tohex2bytes except that the output is written in-place todest. The length ofdest must be half the length ofitr.
Calling hex2bytes! with iterators producing UInt8 requires version 1.7. In earlier versions, you can collect the iterable before calling instead.
Base.bytes2hex —Functionbytes2hex(itr) -> Stringbytes2hex(io::IO, itr)Convert an iteratoritr of bytes to its hexadecimal string representation, either returning aString viabytes2hex(itr) or writing the string to anio stream viabytes2hex(io, itr). The hexadecimal characters are all lowercase.
Callingbytes2hex with arbitrary iterators producingUInt8 values requires Julia 1.7 or later. In earlier versions, you cancollect the iterator before callingbytes2hex.
Examples
julia> a = string(12345, base = 16)"3039"julia> b = hex2bytes(a)2-element Vector{UInt8}: 0x30 0x39julia> bytes2hex(b)"3039"sourceBase.one —Functionone(x)one(T::Type)Return a multiplicative identity forx: a value such thatone(x)*x == x*one(x) == x. If the multiplicative identity can be deduced from the type alone, then a type may be given as an argument toone (e.g.one(Int) will work because the multiplicative identity is the same for all instances ofInt, butone(Matrix{Int}) is not defined because matrices of different shapes have different multiplicative identities.)
If possible,one(x) returns a value of the same type asx, andone(T) returns a value of typeT. However, this may not be the case for types representing dimensionful quantities (e.g. time in days), since the multiplicative identity must be dimensionless. In that case,one(x) should return an identity value of the same precision (and shape, for matrices) asx.
If you want a quantity that is of the same type asx, or of typeT, even ifx is dimensionful, useoneunit instead.
See also theidentity function, andI inLinearAlgebra for the identity matrix.
Examples
julia> one(3.7)1.0julia> one(Int)1julia> import Dates; one(Dates.Day(1))1sourceBase.oneunit —Functiononeunit(x::T)oneunit(T::Type)ReturnT(one(x)), whereT is either the type of the argument, or the argument itself in cases where theoneunit can be deduced from the type alone. This differs fromone for dimensionful quantities:one is dimensionless (a multiplicative identity) whileoneunit is dimensionful (of the same type asx, or of typeT).
Examples
julia> oneunit(3.7)1.0julia> import Dates; oneunit(Dates.Day)1 daysourceBase.zero —Functionzero(x)zero(::Type)Get the additive identity element forx. If the additive identity can be deduced from the type alone, then a type may be given as an argument tozero.
For example,zero(Int) will work because the additive identity is the same for all instances ofInt, butzero(Vector{Int}) is not defined because vectors of different lengths have different additive identities.
See alsoiszero,one,oneunit,oftype.
Examples
julia> zero(1)0julia> zero(big"2.0")0.0julia> zero(rand(2,2))2×2 Matrix{Float64}: 0.0 0.0 0.0 0.0sourceBase.MathConstants.pi —ConstantBase.MathConstants.ℯ —ConstantBase.MathConstants.catalan —ConstantcatalanCatalan's constant.
Examples
julia> Base.MathConstants.catalancatalan = 0.9159655941772...julia> sum(log(x)/(1+x^2) for x in 1:0.01:10^6) * 0.010.9159466120554123sourceBase.MathConstants.eulergamma —ConstantγeulergammaEuler's constant.
Examples
julia> Base.MathConstants.eulergammaγ = 0.5772156649015...julia> dx = 10^-6;julia> sum(-exp(-x) * log(x) for x in dx:dx:100) * dx0.5772078382499133sourceBase.MathConstants.golden —ConstantφgoldenThe golden ratio.
Examples
julia> Base.MathConstants.goldenφ = 1.6180339887498...julia> (2ans - 1)^2 ≈ 5truesourceBase.Inf32 —ConstantBase.Inf16 —ConstantBase.NaN32 —ConstantBase.NaN16 —ConstantBase.issubnormal —FunctionBase.isfinite —Functionisfinite(f) -> BoolTest whether a number is finite.
Examples
julia> isfinite(5)truejulia> isfinite(NaN32)falsesourceBase.isone —Functionisone(x)Returntrue ifx == one(x); ifx is an array, this checks whetherx is an identity matrix.
Examples
julia> isone(1.0)truejulia> isone([1 0; 0 2])falsejulia> isone([1 0; 0 true])truesourceBase.nextfloat —Functionnextfloat(x::AbstractFloat)Return the smallest floating point numbery of the same type asx such thatx < y. If no suchy exists (e.g. ifx isInf orNaN), then returnx.
See also:prevfloat,eps,issubnormal.
Base.prevfloat —Functionprevfloat(x::AbstractFloat)Return the largest floating point numbery of the same type asx such thaty < x. If no suchy exists (e.g. ifx is-Inf orNaN), then returnx.
Base.isinteger —Functionisinteger(x) -> BoolTest whetherx is numerically equal to some integer.
Examples
julia> isinteger(4.0)truesourceBase.isreal —Functionisreal(x) -> BoolTest whetherx or all its elements are numerically equal to some real number including infinities and NaNs.isreal(x) is true ifisequal(x, real(x)) is true.
Examples
julia> isreal(5.)truejulia> isreal(1 - 3im)falsejulia> isreal(Inf + 0im)truejulia> isreal([4.; complex(0,1)])falsesourceCore.Float32 —MethodFloat32(x [, mode::RoundingMode])Create aFloat32 fromx. Ifx is not exactly representable thenmode determines howx is rounded.
Examples
julia> Float32(1/3, RoundDown)0.3333333f0julia> Float32(1/3, RoundUp)0.33333334f0SeeRoundingMode for available rounding modes.
Core.Float64 —MethodFloat64(x [, mode::RoundingMode])Create aFloat64 fromx. Ifx is not exactly representable thenmode determines howx is rounded.
Examples
julia> Float64(pi, RoundDown)3.141592653589793julia> Float64(pi, RoundUp)3.1415926535897936SeeRoundingMode for available rounding modes.
Base.Rounding.rounding —FunctionBase.Rounding.setrounding —Methodsetrounding(T, mode)Set the rounding mode of floating point typeT, controlling the rounding of basic arithmetic functions (+,-,*,/ andsqrt) and type conversion. Other numerical functions may give incorrect or invalid values when using rounding modes other than the defaultRoundNearest.
Note that this is currently only supported forT == BigFloat.
This function is not thread-safe. It will affect code running on all threads, but its behavior is undefined if called concurrently with computations that use the setting.
Base.Rounding.setrounding —Methodsetrounding(f::Function, T, mode)Change the rounding mode of floating point typeT for the duration off. It is logically equivalent to:
old = rounding(T)setrounding(T, mode)f()setrounding(T, old)SeeRoundingMode for available rounding modes.
Base.Rounding.get_zero_subnormals —Functionget_zero_subnormals() -> BoolReturnfalse if operations on subnormal floating-point values ("denormals") obey rules for IEEE arithmetic, andtrue if they might be converted to zeros.
Base.Rounding.set_zero_subnormals —Functionset_zero_subnormals(yes::Bool) -> BoolIfyes isfalse, subsequent floating-point operations follow rules for IEEE arithmetic on subnormal values ("denormals"). Otherwise, floating-point operations are permitted (but not required) to convert subnormal inputs or outputs to zero. Returnstrue unlessyes==true but the hardware does not support zeroing of subnormal numbers.
set_zero_subnormals(true) can speed up some computations on some hardware. However, it can break identities such as(x-y==0) == (x==y).
Base.count_ones —Functioncount_ones(x::Integer) -> IntegerNumber of ones in the binary representation ofx.
Examples
julia> count_ones(7)3julia> count_ones(Int32(-1))32sourceBase.count_zeros —Functioncount_zeros(x::Integer) -> IntegerNumber of zeros in the binary representation ofx.
Examples
julia> count_zeros(Int32(2 ^ 16 - 1))16julia> count_zeros(-1)0sourceBase.leading_zeros —Functionleading_zeros(x::Integer) -> IntegerNumber of zeros leading the binary representation ofx.
Examples
julia> leading_zeros(Int32(1))31sourceBase.leading_ones —Functionleading_ones(x::Integer) -> IntegerNumber of ones leading the binary representation ofx.
Examples
julia> leading_ones(UInt32(2 ^ 32 - 2))31sourceBase.trailing_zeros —Functiontrailing_zeros(x::Integer) -> IntegerNumber of zeros trailing the binary representation ofx.
Examples
julia> trailing_zeros(2)1sourceBase.trailing_ones —Functiontrailing_ones(x::Integer) -> IntegerNumber of ones trailing the binary representation ofx.
Examples
julia> trailing_ones(3)2sourceBase.isodd —Functionisodd(x::Number) -> BoolReturntrue ifx is an odd integer (that is, an integer not divisible by 2), andfalse otherwise.
Examples
julia> isodd(9)truejulia> isodd(10)falsesourceBase.iseven —Functioniseven(x::Number) -> BoolReturntrue ifx is an even integer (that is, an integer divisible by 2), andfalse otherwise.
Examples
julia> iseven(9)falsejulia> iseven(10)truesourceCore.@int128_str —MacroCore.@uint128_str —MacroTheBigFloat andBigInt types implements arbitrary-precision floating point and integer arithmetic, respectively. ForBigFloat theGNU MPFR library is used, and forBigInt the [GNU Multiple Precision Arithmetic Library (GMP)] (https://gmplib.org) is used.
Base.MPFR.BigFloat —MethodBigFloat(x::Union{Real, AbstractString} [, rounding::RoundingMode=rounding(BigFloat)]; [precision::Integer=precision(BigFloat)])Create an arbitrary precision floating point number fromx, with precisionprecision. Therounding argument specifies the direction in which the result should be rounded if the conversion cannot be done exactly. If not provided, these are set by the current global values.
BigFloat(x::Real) is the same asconvert(BigFloat,x), except ifx itself is alreadyBigFloat, in which case it will return a value with the precision set to the current global precision;convert will always returnx.
BigFloat(x::AbstractString) is identical toparse. This is provided for convenience since decimal literals are converted toFloat64 when parsed, soBigFloat(2.1) may not yield what you expect.
See also:
precision as a keyword argument requires at least Julia 1.1. In Julia 1.0precision is the second positional argument (BigFloat(x, precision)).
Examples
julia> BigFloat(2.1) # 2.1 here is a Float642.100000000000000088817841970012523233890533447265625julia> BigFloat("2.1") # the closest BigFloat to 2.12.099999999999999999999999999999999999999999999999999999999999999999999999999986julia> BigFloat("2.1", RoundUp)2.100000000000000000000000000000000000000000000000000000000000000000000000000021julia> BigFloat("2.1", RoundUp, precision=128)2.100000000000000000000000000000000000007sourceBase.precision —Functionprecision(num::AbstractFloat; base::Integer=2)precision(T::Type; base::Integer=2)Get the precision of a floating point number, as defined by the effective number of bits in the significand, or the precision of a floating-point typeT (its current default, ifT is a variable-precision type likeBigFloat).
Ifbase is specified, then it returns the maximum corresponding number of significand digits in that base.
Base.MPFR.setprecision —Functionsetprecision(f::Function, [T=BigFloat,] precision::Integer; base=2)Change theT arithmetic precision (in the givenbase) for the duration off. It is logically equivalent to:
old = precision(BigFloat)setprecision(BigFloat, precision)f()setprecision(BigFloat, old)Often used assetprecision(T, precision) do ... end
Note:nextfloat(),prevfloat() do not use the precision mentioned bysetprecision.
There is a fallback implementation of this method that callsprecision andsetprecision, but it should no longer be relied on. Instead, you should define the 3-argument form directly in a way that usesScopedValue, or recommend that callers useScopedValue and@with themselves.
setprecision([T=BigFloat,] precision::Int; base=2)Set the precision (in bits, by default) to be used forT arithmetic. Ifbase is specified, then the precision is the minimum required to give at leastprecision digits in the givenbase.
This function is not thread-safe. It will affect code running on all threads, but its behavior is undefined if called concurrently with computations that use the setting.
Base.GMP.BigInt —MethodBigInt(x)Create an arbitrary precision integer.x may be anInt (or anything that can be converted to anInt). The usual mathematical operators are defined for this type, and results are promoted to aBigInt.
Instances can be constructed from strings viaparse, or using thebig string literal.
Examples
julia> parse(BigInt, "42")42julia> big"313"313julia> BigInt(10)^1910000000000000000000sourceCore.@big_str —Macro@big_str strParse a string into aBigInt orBigFloat, and throw anArgumentError if the string is not a valid number. For integers_ is allowed in the string as a separator.
Examples
julia> big"123_456"123456julia> big"7891.5"7891.5julia> big"_"ERROR: ArgumentError: invalid number format _ for BigInt or BigFloat[...]Using@big_str for constructingBigFloat values may not result in the behavior that might be naively expected: as a macro,@big_str obeys the global precision (setprecision) and rounding mode (setrounding) settings as they are atload time. Thus, a function like() -> precision(big"0.3") returns a constant whose value depends on the value of the precision at the point when the function is defined,not at the precision at the time when the function is called.
Settings
This document was generated withDocumenter.jl version 1.16.0 onThursday 20 November 2025. Using Julia version 1.12.2.