Base.Iterators.Stateful —TypeStateful(itr)There are several different ways to think about this iterator wrapper:
Channel-like abstraction.Stateful provides the regular iterator interface. Like other mutable iterators (e.g.Base.Channel), if iteration is stopped early (e.g. by abreak in afor loop), iteration can be resumed from the same spot by continuing to iterate over the same iterator object (in contrast, an immutable iterator would restart from the beginning).
Examples
julia> a = Iterators.Stateful("abcdef");julia> isempty(a)falsejulia> popfirst!(a)'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)julia> collect(Iterators.take(a, 3))3-element Vector{Char}: 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase) 'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase) 'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)julia> collect(a)2-element Vector{Char}: 'e': ASCII/Unicode U+0065 (category Ll: Letter, lowercase) 'f': ASCII/Unicode U+0066 (category Ll: Letter, lowercase)julia> Iterators.reset!(a); popfirst!(a)'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)julia> Iterators.reset!(a, "hello"); popfirst!(a)'h': ASCII/Unicode U+0068 (category Ll: Letter, lowercase)julia> a = Iterators.Stateful([1,1,1,2,3,4]);julia> for x in a; x == 1 || break; endjulia> peek(a)3julia> sum(a) # Sum the remaining elements7sourceBase.Iterators.zip —Functionzip(iters...)Run multiple iterators at the same time, until any of them is exhausted. The value type of thezip iterator is a tuple of values of its subiterators.
zip orders the calls to its subiterators in such a way that stateful iterators will not advance when another iterator finishes in the current iteration.
See also:enumerate,Base.splat.
Examples
julia> a = 1:51:5julia> b = ["e","d","b","c","a"]5-element Vector{String}: "e" "d" "b" "c" "a"julia> c = zip(a,b)zip(1:5, ["e", "d", "b", "c", "a"])julia> length(c)5julia> first(c)(1, "e")sourceBase.Iterators.enumerate —Functionenumerate(iter)An iterator that yields(i, x) wherei is a counter starting at 1, andx is theith value from the given iterator. It's useful when you need not only the valuesx over which you are iterating, but also the number of iterations so far.
Note thati may not be valid for indexingiter, or may index a different element. This will happen ifiter has indices that do not start at 1, and may happen for strings, dictionaries, etc. See thepairs(IndexLinear(), iter) method if you want to ensure thati is an index.
Examples
julia> a = ["a", "b", "c"];julia> for (index, value) in enumerate(a) println("$index $value") end1 a2 b3 cjulia> str = "naïve";julia> for (i, val) in enumerate(str) print("i = ", i, ", val = ", val, ", ") try @show(str[i]) catch e println(e) end endi = 1, val = n, str[i] = 'n'i = 2, val = a, str[i] = 'a'i = 3, val = ï, str[i] = 'ï'i = 4, val = v, StringIndexError("naïve", 4)i = 5, val = e, str[i] = 'v'sourceBase.Iterators.rest —Functionrest(iter, state)An iterator that yields the same elements asiter, but starting at the givenstate.
See also:Iterators.drop,Iterators.peel,Base.rest.
Examples
julia> collect(Iterators.rest([1,2,3,4], 2))3-element Vector{Int64}: 2 3 4sourceBase.Iterators.countfrom —Functioncountfrom(start=1, step=1)An iterator that counts forever, starting atstart and incrementing bystep.
Examples
julia> for v in Iterators.countfrom(5, 2) v > 10 && break println(v) end579sourceBase.Iterators.take —Functiontake(iter, n)An iterator that generates at most the firstn elements ofiter.
See also:drop,peel,first,Base.take!.
Examples
julia> a = 1:2:111:2:11julia> collect(a)6-element Vector{Int64}: 1 3 5 7 9 11julia> collect(Iterators.take(a,3))3-element Vector{Int64}: 1 3 5sourceBase.Iterators.takewhile —Functiontakewhile(pred, iter)An iterator that generates element fromiter as long as predicatepred is true, afterwards, drops every element.
Examples
julia> s = collect(1:5)5-element Vector{Int64}: 1 2 3 4 5julia> collect(Iterators.takewhile(<(3),s))2-element Vector{Int64}: 1 2sourceBase.Iterators.drop —Functiondrop(iter, n)An iterator that generates all but the firstn elements ofiter.
Examples
julia> a = 1:2:111:2:11julia> collect(a)6-element Vector{Int64}: 1 3 5 7 9 11julia> collect(Iterators.drop(a,4))2-element Vector{Int64}: 9 11sourceBase.Iterators.dropwhile —Functiondropwhile(pred, iter)An iterator that drops element fromiter as long as predicatepred is true, afterwards, returns every element.
Examples
julia> s = collect(1:5)5-element Vector{Int64}: 1 2 3 4 5julia> collect(Iterators.dropwhile(<(3),s))3-element Vector{Int64}: 3 4 5sourceBase.Iterators.cycle —Functioncycle(iter[, n::Int])An iterator that cycles throughiter forever. Ifn is specified, then it cycles throughiter that many times. Wheniter is empty, so arecycle(iter) andcycle(iter, n).
Iterators.cycle(iter, n) is the lazy equivalent ofBase.repeat(vector, n), whileIterators.repeated(iter, n) is the lazyBase.fill(item, n).
Examples
julia> for (i, v) in enumerate(Iterators.cycle("hello")) print(v) i > 10 && break endhellohellohjulia> foreach(print, Iterators.cycle(['j', 'u', 'l', 'i', 'a'], 3))juliajuliajuliajulia> repeat([1,2,3], 4) == collect(Iterators.cycle([1,2,3], 4))truejulia> fill([1,2,3], 4) == collect(Iterators.repeated([1,2,3], 4))truesourceBase.Iterators.repeated —Functionrepeated(x[, n::Int])An iterator that generates the valuex forever. Ifn is specified, generatesx that many times (equivalent totake(repeated(x), n)).
See alsofill, and compareIterators.cycle.
Examples
julia> a = Iterators.repeated([1 2], 4);julia> collect(a)4-element Vector{Matrix{Int64}}: [1 2] [1 2] [1 2] [1 2]julia> ans == fill([1 2], 4)truejulia> Iterators.cycle([1 2], 4) |> collect |> println[1, 2, 1, 2, 1, 2, 1, 2]sourceBase.Iterators.product —Functionproduct(iters...)Return an iterator over the product of several iterators. Each generated element is a tuple whoseith element comes from theith argument iterator. The first iterator changes the fastest.
See also:zip,Iterators.flatten.
Examples
julia> collect(Iterators.product(1:2, 3:5))2×3 Matrix{Tuple{Int64, Int64}}: (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5)julia> ans == [(x,y) for x in 1:2, y in 3:5] # collects a generator involving Iterators.producttruesourceBase.Iterators.flatten —Functionflatten(iter)Given an iterator that yields iterators, return an iterator that yields the elements of those iterators. Put differently, the elements of the argument iterator are concatenated.
Examples
julia> collect(Iterators.flatten((1:2, 8:9)))4-element Vector{Int64}: 1 2 8 9julia> [(x,y) for x in 0:1 for y in 'a':'c'] # collects generators involving Iterators.flatten6-element Vector{Tuple{Int64, Char}}: (0, 'a') (0, 'b') (0, 'c') (1, 'a') (1, 'b') (1, 'c')sourceBase.Iterators.flatmap —FunctionIterators.flatmap(f, iterators...)Equivalent toflatten(map(f, iterators...)).
See alsoIterators.flatten,Iterators.map.
Examples
julia> Iterators.flatmap(n -> -n:2:n, 1:3) |> collect9-element Vector{Int64}: -1 1 -2 0 2 -3 -1 1 3julia> stack(n -> -n:2:n, 1:3)ERROR: DimensionMismatch: stack expects uniform slices, got axes(x) == (1:3,) while first had (1:2,)[...]julia> Iterators.flatmap(n -> (-n, 10n), 1:2) |> collect4-element Vector{Int64}: -1 10 -2 20julia> ans == vec(stack(n -> (-n, 10n), 1:2))truesourceBase.Iterators.partition —Functionpartition(collection, n)Iterate over a collectionn elements at a time.
Examples
julia> collect(Iterators.partition([1,2,3,4,5], 2))3-element Vector{SubArray{Int64, 1, Vector{Int64}, Tuple{UnitRange{Int64}}, true}}: [1, 2] [3, 4] [5]sourceBase.Iterators.map —FunctionIterators.map(f, iterators...)Create a lazy mapping. This is another syntax for writing(f(args...) for args in zip(iterators...)).
Examples
julia> collect(Iterators.map(x -> x^2, 1:3))3-element Vector{Int64}: 1 4 9sourceBase.Iterators.filter —FunctionIterators.filter(flt, itr)Given a predicate functionflt and an iterable objectitr, return an iterable object which upon iteration yields the elementsx ofitr that satisfyflt(x). The order of the original iterator is preserved.
This function islazy; that is, it is guaranteed to return in$Θ(1)$ time and use$Θ(1)$ additional space, andflt will not be called by an invocation offilter. Calls toflt will be made when iterating over the returned iterable object. These calls are not cached and repeated calls will be made when reiterating.
Subsequentlazy transformations on the iterator returned fromfilter, such as those performed byIterators.reverse orcycle, will also delay calls toflt until collecting or iterating over the returned iterable object. If the filter predicate is nondeterministic or its return values depend on the order of iteration over the elements ofitr, composition with lazy transformations may result in surprising behavior. If this is undesirable, either ensure thatflt is a pure function or collect intermediatefilter iterators before further transformations.
SeeBase.filter for an eager implementation of filtering for arrays.
Examples
julia> f = Iterators.filter(isodd, [1, 2, 3, 4, 5])Base.Iterators.Filter{typeof(isodd), Vector{Int64}}(isodd, [1, 2, 3, 4, 5])julia> foreach(println, f)135julia> [x for x in [1, 2, 3, 4, 5] if isodd(x)] # collects a generator over Iterators.filter3-element Vector{Int64}: 1 3 5sourceBase.Iterators.accumulate —FunctionIterators.accumulate(f, itr; [init])Given a 2-argument functionf and an iteratoritr, return a new iterator that successively appliesf to the previous value and the next element ofitr.
This is effectively a lazy version ofBase.accumulate.
Examples
julia> a = Iterators.accumulate(+, [1,2,3,4]);julia> foreach(println, a)13610julia> b = Iterators.accumulate(/, (2, 5, 2, 5); init = 100);julia> collect(b)4-element Vector{Float64}: 50.0 10.0 5.0 1.0sourceBase.Iterators.reverse —FunctionIterators.reverse(itr)Given an iteratoritr, thenreverse(itr) is an iterator over the same collection but in the reverse order. This iterator is "lazy" in that it does not make a copy of the collection in order to reverse it; seeBase.reverse for an eager implementation.
(By default, this returns anIterators.Reverse object wrappingitr, which is iterable if the correspondingiterate methods are defined, but someitr types may implement more specializedIterators.reverse behaviors.)
Not all iterator typesT support reverse-order iteration. IfT doesn't, then iterating overIterators.reverse(itr::T) will throw aMethodError because of the missingiterate methods forIterators.Reverse{T}. (To implement these methods, the original iteratoritr::T can be obtained from anr::Iterators.Reverse{T} object byr.itr; more generally, one can useIterators.reverse(r).)
Examples
julia> foreach(println, Iterators.reverse(1:5))54321sourceBase.Iterators.only —Functiononly(x)Return the one and only element of collectionx, or throw anArgumentError if the collection has zero or multiple elements.
Examples
julia> only(["a"])"a"julia> only("a")'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)julia> only(())ERROR: ArgumentError: Tuple contains 0 elements, must contain exactly 1 elementStacktrace:[...]julia> only(('a', 'b'))ERROR: ArgumentError: Tuple contains 2 elements, must contain exactly 1 elementStacktrace:[...]sourceBase.Iterators.peel —Functionpeel(iter)Returns the first element and an iterator over the remaining elements.
If the iterator is empty returnnothing (likeiterate).
See also:Iterators.drop,Iterators.take.
Examples
julia> (a, rest) = Iterators.peel("abc");julia> a'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)julia> collect(rest)2-element Vector{Char}: 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase) 'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)sourceSettings
This document was generated withDocumenter.jl version 1.16.0 onThursday 20 November 2025. Using Julia version 1.12.2.