Base.:+ —Functiondt::Date + t::Time -> DateTimeThe addition of aDate with aTime produces aDateTime. The hour, minute, second, and millisecond parts of theTime are used along with the year, month, and day of theDate to create the newDateTime. Non-zero microseconds or nanoseconds in theTime type will result in anInexactError being thrown.
+(x, y...)Addition operator.
Infixx+y+z+... calls this function with all arguments, i.e.+(x, y, z, ...), which by default then calls(x+y) + z + ... starting from the left.
Note that overflow is possible for most integer types, including the defaultInt, when adding large numbers.
Examples
julia> 1 + 20 + 425julia> +(1, 20, 4)25julia> [1,2] + [3,4]2-element Vector{Int64}: 4 6julia> typemax(Int) + 1 < 0truesourceBase.:* —Method*(x, y...)Multiplication operator.
Infixx*y*z*... calls this function with all arguments, i.e.*(x, y, z, ...), which by default then calls(x*y) * z * ... starting from the left.
Juxtaposition such as2pi also calls*(2, pi). Note that this operation has higher precedence than a literal*. Note also that juxtaposition "0x..." (integer zero times a variable whose name starts withx) is forbidden as it clashes with unsigned integer literals:0x01 isa UInt8.
Note that overflow is possible for most integer types, including the defaultInt, when multiplying large numbers.
Examples
julia> 2 * 7 * 8112julia> *(2, 7, 8)112julia> [2 0; 0 3] * [1, 10] # matrix * vector2-element Vector{Int64}: 2 30julia> 1/2pi, 1/2*pi # juxtaposition has higher precedence(0.15915494309189535, 1.5707963267948966)julia> x = [1, 2]; x'x # adjoint vector * vector5sourceBase.:/ —Function/(x, y)Right division operator: multiplication ofx by the inverse ofy on the right.
Gives floating-point results for integer arguments. See÷ for integer division, or// forRational results.
Examples
julia> 1/20.5julia> 4/22.0julia> 4.5/22.25sourceA / BMatrix right-division:A / B is equivalent to(B' \ A')' where\ is the left-division operator. For square matrices, the resultX is such thatA == X*B.
See also:rdiv!.
Examples
julia> A = Float64[1 4 5; 3 9 2]; B = Float64[1 4 2; 3 4 2; 8 7 1];julia> X = A / B2×3 Matrix{Float64}: -0.65 3.75 -1.2 3.25 -2.75 1.0julia> isapprox(A, X*B)truejulia> isapprox(X, A*pinv(B))trueBase.:\ —Method\(x, y)Left division operator: multiplication ofy by the inverse ofx on the left. Gives floating-point results for integer arguments.
Examples
julia> 3 \ 62.0julia> inv(3) * 62.0julia> A = [4 3; 2 1]; x = [5, 6];julia> A \ x2-element Vector{Float64}: 6.5 -7.0julia> inv(A) * x2-element Vector{Float64}: 6.5 -7.0sourceBase.:^ —Method^(x, y)Exponentiation operator.
Ifx andy are integers, the result may overflow. To enter numbers in scientific notation, useFloat64 literals such as1.2e3 rather than1.2 * 10^3.
Ify is anInt literal (e.g.2 inx^2 or-3 inx^-3), the Julia codex^y is transformed by the compiler toBase.literal_pow(^, x, Val(y)), to enable compile-time specialization on the value of the exponent. (As a default fallback we haveBase.literal_pow(^, x, Val(y)) = ^(x,y), where usually^ == Base.^ unless^ has been defined in the calling namespace.) Ify is a negative integer literal, thenBase.literal_pow transforms the operation toinv(x)^-y by default, where-y is positive.
Examples
julia> 3^5243julia> 3^-1 # uses Base.literal_pow0.3333333333333333julia> p = -1;julia> 3^pERROR: DomainError with -1:Cannot raise an integer x to a negative power -1.[...]julia> 3.0^p0.3333333333333333julia> 10^19 > 0 # integer overflowfalsejulia> big(10)^19 == 1e19truesourceBase.muladd —Functionmuladd(x, y, z)Combined multiply-add: computesx*y+z, but allowing the add and multiply to be merged with each other or with surrounding operations for performance. For example, this may be implemented as anfma if the hardware supports it efficiently. The result can be different on different machines and can also be different on the same machine due to constant propagation or other optimizations. Seefma.
Examples
julia> muladd(3, 2, 1)7julia> 3 * 2 + 17sourcemuladd(A, y, z)Combined multiply-add,A*y .+ z, for matrix-matrix or matrix-vector multiplication. The result is always the same size asA*y, butz may be smaller, or a scalar.
Examples
julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; z=[0, 100];julia> muladd(A, B, z)2×2 Matrix{Float64}: 3.0 3.0 107.0 107.0Base.inv —Methodinv(x)Return the multiplicative inverse ofx, such thatx*inv(x) orinv(x)*x yieldsone(x) (the multiplicative identity) up to roundoff errors.
Ifx is a number, this is essentially the same asone(x)/x, but for some typesinv(x) may be slightly more efficient.
Examples
julia> inv(2)0.5julia> inv(1 + 2im)0.2 - 0.4imjulia> inv(1 + 2im) * (1 + 2im)1.0 + 0.0imjulia> inv(2//3)3//2sourceBase.div —Functiondiv(x, y)÷(x, y)The quotient from Euclidean (integer) division. Generally equivalent to a mathematical operation x/y without a fractional part.
Examples
julia> 9 ÷ 42julia> -5 ÷ 3-1julia> 5.0 ÷ 22.0julia> div.(-5:5, 3)'1×11 adjoint(::Vector{Int64}) with eltype Int64: -1 -1 -1 0 0 0 0 0 1 1 1sourceBase.div —Methoddiv(x, y, r::RoundingMode=RoundToZero)The quotient from Euclidean (integer) division. Computesx / y, rounded to an integer according to the rounding moder. In other words, the quantity
round(x / y, r)without any intermediate rounding.
See alsofld andcld, which are special cases of this function.
Examples:
julia> div(4, 3, RoundToZero) # Matches div(4, 3)1julia> div(4, 3, RoundDown) # Matches fld(4, 3)1julia> div(4, 3, RoundUp) # Matches cld(4, 3)2julia> div(5, 2, RoundNearest)2julia> div(5, 2, RoundNearestTiesAway)3julia> div(-5, 2, RoundNearest)-2julia> div(-5, 2, RoundNearestTiesAway)-3julia> div(-5, 2, RoundNearestTiesUp)-2julia> div(4, 3, RoundFromZero)2julia> div(-4, 3, RoundFromZero)-2Becausediv(x, y) implements strictly correct truncated rounding based on the true value of floating-point numbers, unintuitive situations can arise. For example:
julia> div(6.0, 0.1)59.0julia> 6.0 / 0.160.0julia> 6.0 / big(0.1)59.99999999999999666933092612453056361837965690217069245739573412231113406246995What is happening here is that the true value of the floating-point number written as0.1 is slightly larger than the numerical value 1/10 while6.0 represents the number 6 precisely. Therefore the true value of6.0 / 0.1 is slightly less than 60. When doing division, this is rounded to precisely60.0, butdiv(6.0, 0.1, RoundToZero) always truncates the true value, so the result is59.0.
Base.fld —Functionfld(x, y)Largest integer less than or equal tox / y. Equivalent todiv(x, y, RoundDown).
Examples
julia> fld(7.3, 5.5)1.0julia> fld.(-5:5, 3)'1×11 adjoint(::Vector{Int64}) with eltype Int64: -2 -2 -1 -1 -1 0 0 0 1 1 1Becausefld(x, y) implements strictly correct floored rounding based on the true value of floating-point numbers, unintuitive situations can arise. For example:
julia> fld(6.0, 0.1)59.0julia> 6.0 / 0.160.0julia> 6.0 / big(0.1)59.99999999999999666933092612453056361837965690217069245739573412231113406246995What is happening here is that the true value of the floating-point number written as0.1 is slightly larger than the numerical value 1/10 while6.0 represents the number 6 precisely. Therefore the true value of6.0 / 0.1 is slightly less than 60. When doing division, this is rounded to precisely60.0, butfld(6.0, 0.1) always takes the floor of the true value, so the result is59.0.
Base.mod —Functionrem(x::Integer, T::Type{<:Integer}) -> Tmod(x::Integer, T::Type{<:Integer}) -> T%(x::Integer, T::Type{<:Integer}) -> TFindy::T such thatx ≡y (mod n), where n is the number of integers representable inT, andy is an integer in[typemin(T),typemax(T)]. IfT can represent any integer (e.g.T == BigInt), then this operation corresponds to a conversion toT.
Examples
julia> x = 129 % Int8-127julia> typeof(x)Int8julia> x = 129 % BigInt129julia> typeof(x)BigIntsourcemod(x, y)rem(x, y, RoundDown)The reduction ofx moduloy, or equivalently, the remainder ofx after floored division byy, i.e.x - y*fld(x,y) if computed without intermediate rounding.
The result will have the same sign asy, and magnitude less thanabs(y) (with some exceptions, see note below).
When used with floating point values, the exact result may not be representable by the type, and so rounding error may occur. In particular, if the exact result is very close toy, then it may be rounded toy.
See also:rem,div,fld,mod1,invmod.
julia> mod(8, 3)2julia> mod(9, 3)0julia> mod(8.9, 3)2.9000000000000004julia> mod(eps(), 3)2.220446049250313e-16julia> mod(-eps(), 3)3.0julia> mod.(-5:5, 3)'1×11 adjoint(::Vector{Int64}) with eltype Int64: 1 2 0 1 2 0 1 2 0 1 2sourceBase.rem —Functionrem(x, y)%(x, y)Remainder from Euclidean division, returning a value of the same sign asx, and smaller in magnitude thany. This value is always exact.
Examples
julia> x = 15; y = 4;julia> x % y3julia> x == div(x, y) * y + rem(x, y)truejulia> rem.(-5:5, 3)'1×11 adjoint(::Vector{Int64}) with eltype Int64: -2 -1 0 -2 -1 0 1 2 0 1 2sourceBase.rem —Methodrem(x, y, r::RoundingMode=RoundToZero)Compute the remainder ofx after integer division byy, with the quotient rounded according to the rounding moder. In other words, the quantity
x - y * round(x / y, r)without any intermediate rounding.
ifr == RoundNearest, then the result is exact, and in the interval$[-|y| / 2, |y| / 2]$. See alsoRoundNearest.
ifr == RoundToZero (default), then the result is exact, and in the interval$[0, |y|)$ ifx is positive, or$(-|y|, 0]$ otherwise. See alsoRoundToZero.
ifr == RoundDown, then the result is in the interval$[0, y)$ ify is positive, or$(y, 0]$ otherwise. The result may not be exact ifx andy have different signs, andabs(x) < abs(y). See alsoRoundDown.
ifr == RoundUp, then the result is in the interval$(-y, 0]$ ify is positive, or$[0, -y)$ otherwise. The result may not be exact ifx andy have the same sign, andabs(x) < abs(y). See alsoRoundUp.
ifr == RoundFromZero, then the result is in the interval$(-y, 0]$ ify is positive, or$[0, -y)$ otherwise. The result may not be exact ifx andy have the same sign, andabs(x) < abs(y). See alsoRoundFromZero.
Examples:
julia> x = 9; y = 4;julia> x % y # same as rem(x, y)1julia> x ÷ y # same as div(x, y)2julia> x == div(x, y) * y + rem(x, y)truesourceBase.Math.rem2pi —Functionrem2pi(x, r::RoundingMode)Compute the remainder ofx after integer division by2π, with the quotient rounded according to the rounding moder. In other words, the quantity
x - 2π*round(x/(2π),r)without any intermediate rounding. This internally uses a high precision approximation of 2π, and so will give a more accurate result thanrem(x,2π,r)
ifr == RoundNearest, then the result is in the interval$[-π, π]$. This will generally be the most accurate result. See alsoRoundNearest.
ifr == RoundToZero, then the result is in the interval$[0, 2π]$ ifx is positive,. or$[-2π, 0]$ otherwise. See alsoRoundToZero.
ifr == RoundDown, then the result is in the interval$[0, 2π]$. See alsoRoundDown.
ifr == RoundUp, then the result is in the interval$[-2π, 0]$. See alsoRoundUp.
Examples
julia> rem2pi(7pi/4, RoundNearest)-0.7853981633974485julia> rem2pi(7pi/4, RoundDown)5.497787143782138sourceBase.Math.mod2pi —Functionmod2pi(x)Modulus after division by2π, returning in the range$[0,2π)$.
This function computes a floating point representation of the modulus after division by numerically exact2π, and is therefore not exactly the same asmod(x,2π), which would compute the modulus ofx relative to division by the floating-point number2π.
Depending on the format of the input value, the closest representable value to 2π may be less than 2π. For example, the expressionmod2pi(2π) will not return0, because the intermediate value of2*π is aFloat64 and2*Float64(π) < 2*big(π). Seerem2pi for more refined control of this behavior.
Examples
julia> mod2pi(9*pi/4)0.7853981633974481sourceBase.divrem —Functiondivrem(x, y, r::RoundingMode=RoundToZero)The quotient and remainder from Euclidean division. Equivalent to(div(x, y, r), rem(x, y, r)). Equivalently, with the default value ofr, this call is equivalent to(x ÷ y, x % y).
Examples
julia> divrem(3, 7)(0, 3)julia> divrem(7, 3)(2, 1)sourceBase.fldmod —FunctionBase.mod1 —Functionmod1(x, y)Modulus after flooring division, returning a valuer such thatmod(r, y) == mod(x, y) in the range$(0, y]$ for positivey and in the range$[y,0)$ for negativey.
With integer arguments and positivey, this is equal tomod(x, 1:y), and hence natural for 1-based indexing. By comparison,mod(x, y) == mod(x, 0:y-1) is natural for computations with offsets or strides.
Examples
julia> mod1(4, 2)2julia> mod1.(-5:5, 3)'1×11 adjoint(::Vector{Int64}) with eltype Int64: 1 2 3 1 2 3 1 2 3 1 2julia> mod1.([-0.1, 0, 0.1, 1, 2, 2.9, 3, 3.1]', 3)1×8 Matrix{Float64}: 2.9 3.0 0.1 1.0 2.0 2.9 3.0 0.1sourceBase.fldmod1 —FunctionBase.:// —Function//(num, den)Divide two integers or rational numbers, giving aRational result. More generally,// can be used for exact rational division of other numeric types with integer or rational components, such as complex numbers with integer components.
Note that floating-point (AbstractFloat) arguments are not permitted by// (even if the values are rational). The arguments must be subtypes ofInteger,Rational, or composites thereof.
Examples
julia> 3 // 53//5julia> (3 // 5) // (2 // 1)3//10julia> (1+2im) // (3+4im)11//25 + 2//25*imjulia> 1.0 // 2ERROR: MethodError: no method matching //(::Float64, ::Int64)[...]sourceBase.rationalize —Functionrationalize([T<:Integer=Int,] x; tol::Real=eps(x))Approximate floating point numberx as aRational number with components of the given integer type. The result will differ fromx by no more thantol.
Examples
julia> rationalize(5.6)28//5julia> a = rationalize(BigInt, 10.3)103//10julia> typeof(numerator(a))BigIntsourceBase.numerator —Functionnumerator(x)Numerator of the rational representation ofx.
Examples
julia> numerator(2//3)2julia> numerator(4)4sourceBase.denominator —Functiondenominator(x)Denominator of the rational representation ofx.
Examples
julia> denominator(2//3)3julia> denominator(4)1sourceBase.:<< —Function<<(B::BitVector, n) -> BitVectorLeft bit shift operator,B << n. Forn >= 0, the result isB with elements shiftedn positions backwards, filling withfalse values. Ifn < 0, elements are shifted forwards. Equivalent toB >> -n.
Examples
julia> B = BitVector([true, false, true, false, false])5-element BitVector: 1 0 1 0 0julia> B << 15-element BitVector: 0 1 0 0 0julia> B << -15-element BitVector: 0 1 0 1 0source<<(x, n)Left bit shift operator,x << n. Forn >= 0, the result isx shifted left byn bits, filling with0s. This is equivalent tox * 2^n. Forn < 0, this is equivalent tox >> -n.
Examples
julia> Int8(3) << 212julia> bitstring(Int8(3))"00000011"julia> bitstring(Int8(12))"00001100"sourceBase.:>> —Function>>(B::BitVector, n) -> BitVectorRight bit shift operator,B >> n. Forn >= 0, the result isB with elements shiftedn positions forward, filling withfalse values. Ifn < 0, elements are shifted backwards. Equivalent toB << -n.
Examples
julia> B = BitVector([true, false, true, false, false])5-element BitVector: 1 0 1 0 0julia> B >> 15-element BitVector: 0 1 0 1 0julia> B >> -15-element BitVector: 0 1 0 0 0source>>(x, n)Right bit shift operator,x >> n. Forn >= 0, the result isx shifted right byn bits, filling with0s ifx >= 0,1s ifx < 0, preserving the sign ofx. This is equivalent tofld(x, 2^n). Forn < 0, this is equivalent tox << -n.
Examples
julia> Int8(13) >> 23julia> bitstring(Int8(13))"00001101"julia> bitstring(Int8(3))"00000011"julia> Int8(-14) >> 2-4julia> bitstring(Int8(-14))"11110010"julia> bitstring(Int8(-4))"11111100"sourceBase.:>>> —Function>>>(B::BitVector, n) -> BitVectorUnsigned right bitshift operator,B >>> n. Equivalent toB >> n. See>> for details and examples.
>>>(x, n)Unsigned right bit shift operator,x >>> n. Forn >= 0, the result isx shifted right byn bits, filling with0s. Forn < 0, this is equivalent tox << -n.
ForUnsigned integer types, this is equivalent to>>. ForSigned integer types, this is equivalent tosigned(unsigned(x) >> n).
Examples
julia> Int8(-14) >>> 260julia> bitstring(Int8(-14))"11110010"julia> bitstring(Int8(60))"00111100"BigInts are treated as if having infinite size, so no filling is required and this is equivalent to>>.
Base.bitrotate —Functionbitrotate(x::Base.BitInteger, k::Integer)bitrotate(x, k) implements bitwise rotation. It returns the value ofx with its bits rotated leftk times. A negative value ofk will rotate to the right instead.
See also:<<,circshift,BitArray.
julia> bitrotate(UInt8(114), 2)0xc9julia> bitstring(bitrotate(0b01110010, 2))"11001001"julia> bitstring(bitrotate(0b01110010, -2))"10011100"julia> bitstring(bitrotate(0b01110010, 8))"01110010"sourceBase.:: —Function:exprQuote an expressionexpr, returning the abstract syntax tree (AST) ofexpr. The AST may be of typeExpr,Symbol, or a literal value. The syntax:identifier evaluates to aSymbol.
See also:Expr,Symbol,Meta.parse
Examples
julia> expr = :(a = b + 2*x):(a = b + 2x)julia> sym = :some_identifier:some_identifierjulia> value = :0xff0xffjulia> typeof((expr, sym, value))Tuple{Expr, Symbol, UInt8}sourceBase.range —Functionrange(start, stop, length)range(start, stop; length, step)range(start; length, stop, step)range(;start, length, stop, step)Construct a specialized array with evenly spaced elements and optimized storage (anAbstractRange) from the arguments. Mathematically a range is uniquely determined by any three ofstart,step,stop andlength. Valid invocations of range are:
range with any three ofstart,step,stop,length.range with two ofstart,stop,length. In this casestep will be assumed to be positive one. If both arguments are Integers, aUnitRange will be returned.range with one ofstop orlength.start andstep will be assumed to be positive one.To construct a descending range, specify a negative step size, e.g.range(5, 1; step = -1) => [5,4,3,2,1]. Otherwise, astop value less than thestart value, with the defaultstep of+1, constructs an empty range. Empty ranges are normalized such that thestop is one less than thestart, e.g.range(5, 1) == 5:4.
See Extended Help for additional details on the returned type. See alsologrange for logarithmically spaced points.
Examples
julia> range(1, length=100)1:100julia> range(1, stop=100)1:100julia> range(1, step=5, length=100)1:5:496julia> range(1, step=5, stop=100)1:5:96julia> range(1, 10, length=101)1.0:0.09:10.0julia> range(1, 100, step=5)1:5:96julia> range(stop=10, length=5)6:10julia> range(stop=10, step=1, length=5)6:1:10julia> range(start=1, step=1, stop=10)1:1:10julia> range(; length = 10)Base.OneTo(10)julia> range(; stop = 6)Base.OneTo(6)julia> range(; stop = 6.5)1.0:1.0:6.0Iflength is not specified andstop - start is not an integer multiple ofstep, a range that ends beforestop will be produced.
julia> range(1, 3.5, step=2)1.0:2.0:3.0Special care is taken to ensure intermediate values are computed rationally. To avoid this induced overhead, see theLinRange constructor.
The versions without keyword arguments andstart as a keyword argument require at least Julia 1.7.
The versions withstop as a sole keyword argument, orlength as a sole keyword argument require at least Julia 1.8.
Extended Help
range will produce aBase.OneTo when the arguments are Integers and
length is providedstop is providedrange will produce aUnitRange when the arguments are Integers and
start andstop are providedlength andstop are providedAUnitRange is not produced ifstep is provided even if specified as one.
Base.OneTo —TypeBase.OneTo(n)Define anAbstractUnitRange that behaves like1:n, with the added distinction that the lower limit is guaranteed (by the type system) to be 1.
Base.StepRangeLen —TypeStepRangeLen( ref::R, step::S, len, [offset=1]) where { R,S}StepRangeLen{T,R,S}( ref::R, step::S, len, [offset=1]) where {T,R,S}StepRangeLen{T,R,S,L}(ref::R, step::S, len, [offset=1]) where {T,R,S,L}A ranger wherer[i] produces values of typeT (in the first form,T is deduced automatically), parameterized by areference value, astep, and thelength. By defaultref is the starting valuer[1], but alternatively you can supply it as the value ofr[offset] for some other index1 <= offset <= len. The syntaxa:b ora:b:c, where any ofa,b, orc are floating-point numbers, creates aStepRangeLen.
Base.logrange —Functionlogrange(start, stop, length)logrange(start, stop; length)Construct a specialized array whose elements are spaced logarithmically between the given endpoints. That is, the ratio of successive elements is a constant, calculated from the length.
This is similar togeomspace in Python. UnlikePowerRange in Mathematica, you specify the number of elements not the ratio. Unlikelogspace in Python and Matlab, thestart andstop arguments are always the first and last elements of the result, not powers applied to some base.
Examples
julia> logrange(10, 4000, length=3)3-element Base.LogRange{Float64, Base.TwicePrecision{Float64}}: 10.0, 200.0, 4000.0julia> ans[2] ≈ sqrt(10 * 4000) # middle element is the geometric meantruejulia> range(10, 40, length=3)[2] ≈ (10 + 40)/2 # arithmetic meantruejulia> logrange(1f0, 32f0, 11)11-element Base.LogRange{Float32, Float64}: 1.0, 1.41421, 2.0, 2.82843, 4.0, 5.65685, 8.0, 11.3137, 16.0, 22.6274, 32.0julia> logrange(1, 1000, length=4) ≈ 10 .^ (0:3)trueSee theLogRange type for further details.
See alsorange for linearly spaced points.
Base.LogRange —TypeLogRange{T}(start, stop, len) <: AbstractVector{T}A range whose elements are spaced logarithmically betweenstart andstop, with spacing controlled bylen. Returned bylogrange.
LikeLinRange, the first and last elements will be exactly those provided, but intermediate values may have small floating-point errors. These are calculated using the logs of the endpoints, which are stored on construction, often in higher precision thanT.
Examples
julia> logrange(1, 4, length=5)5-element Base.LogRange{Float64, Base.TwicePrecision{Float64}}: 1.0, 1.41421, 2.0, 2.82843, 4.0julia> Base.LogRange{Float16}(1, 4, 5)5-element Base.LogRange{Float16, Float64}: 1.0, 1.414, 2.0, 2.828, 4.0julia> logrange(1e-310, 1e-300, 11)[1:2:end]6-element Vector{Float64}: 1.0e-310 9.999999999999974e-309 9.999999999999981e-307 9.999999999999988e-305 9.999999999999994e-303 1.0e-300julia> prevfloat(1e-308, 5) == ans[2]trueNote that integer eltypeT is not allowed. Use for instanceround.(Int, xs), or explicit powers of some integer base:
julia> xs = logrange(1, 512, 4)4-element Base.LogRange{Float64, Base.TwicePrecision{Float64}}: 1.0, 8.0, 64.0, 512.0julia> 2 .^ (0:3:9) |> println[1, 8, 64, 512]sourceBase.:== —Function==(x, y)Generic equality operator. Falls back to===. Should be implemented for all types with a notion of equality, based on the abstract value that an instance represents. For example, all numeric types are compared by numeric value, ignoring type. Strings are compared as sequences of characters, ignoring encoding. Collections of the same type generally compare their key sets, and if those are==, then compare the values for each of those keys, returning true if all such pairs are==. Other properties are typically not taken into account (such as the exact type).
This operator follows IEEE semantics for floating-point numbers:0.0 == -0.0 andNaN != NaN.
The result is of typeBool, except when one of the operands ismissing, in which casemissing is returned (three-valued logic). Collections generally implement three-valued logic akin toall, returning missing if any operands contain missing values and all other pairs are equal. Useisequal or=== to always get aBool result.
Implementation
New numeric types should implement this function for two arguments of the new type, and handle comparison to other types via promotion rules where possible.
Equality and hashing are intimately related; two values that are consideredisequalmust have the samehash and by defaultisequal falls back to==. If a type customizes the behavior of== and/orisequal, thenhash must be similarly implemented to ensureisequal andhash agree.Sets,Dicts, and many other internal implementations assume that this invariant holds.
If some type defines==,isequal, andisless then it should also implement< to ensure consistency of comparisons.
Base.:< —Function<(x)Create a function that compares its argument tox using<, i.e. a function equivalent toy -> y < x. The returned function is of typeBase.Fix2{typeof(<)}, which can be used to implement specialized methods.
<(x, y)Less-than comparison operator. Falls back toisless. Because of the behavior of floating-point NaN values, this operator implements a partial order.
Implementation
New types with a canonical partial order should implement this function for two arguments of the new type. Types with a canonical total order should implementisless instead.
See alsoisunordered.
Examples
julia> 'a' < 'b'truejulia> "abc" < "abd"truejulia> 5 < 3falsesourceBase.:<= —Function<=(x)Create a function that compares its argument tox using<=, i.e. a function equivalent toy -> y <= x. The returned function is of typeBase.Fix2{typeof(<=)}, which can be used to implement specialized methods.
<=(x, y)≤(x,y)Less-than-or-equals comparison operator. Falls back to(x < y) | (x == y).
Examples
julia> 'a' <= 'b'truejulia> 7 ≤ 7 ≤ 9truejulia> "abc" ≤ "abc"truejulia> 5 <= 3falsesourceBase.:>= —Function>=(x)Create a function that compares its argument tox using>=, i.e. a function equivalent toy -> y >= x. The returned function is of typeBase.Fix2{typeof(>=)}, which can be used to implement specialized methods.
>=(x, y)≥(x,y)Greater-than-or-equals comparison operator. Falls back toy <= x.
Examples
julia> 'a' >= 'b'falsejulia> 7 ≥ 7 ≥ 3truejulia> "abc" ≥ "abc"truejulia> 5 >= 3truesourceBase.cmp —Functioncmp(a::AbstractString, b::AbstractString) -> IntCompare two strings. Return0 if both strings have the same length and the character at each index is the same in both strings. Return-1 ifa is a prefix ofb, or ifa comes beforeb in alphabetical order. Return1 ifb is a prefix ofa, or ifb comes beforea in alphabetical order (technically, lexicographical order by Unicode code points).
Examples
julia> cmp("abc", "abc")0julia> cmp("ab", "abc")-1julia> cmp("abc", "ab")1julia> cmp("ab", "ac")-1julia> cmp("ac", "ab")1julia> cmp("α", "a")1julia> cmp("b", "β")-1sourcecmp(<, x, y)Return -1, 0, or 1 depending on whetherx is less than, equal to, or greater thany, respectively. The first argument specifies a less-than comparison function to use.
cmp(x,y)Return -1, 0, or 1 depending on whetherx is less than, equal to, or greater thany, respectively. Uses the total order implemented byisless.
Examples
julia> cmp(1, 2)-1julia> cmp(2, 1)1julia> cmp(2+im, 3-im)ERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64})[...]sourceBase.:& —FunctionBase.xor —Functionxor(x, y)⊻(x, y)Bitwise exclusive or ofx andy. Implementsthree-valued logic, returningmissing if one of the arguments ismissing.
The infix operationa ⊻ b is a synonym forxor(a,b), and⊻ can be typed by tab-completing\xor or\veebar in the Julia REPL.
Examples
julia> xor(true, false)truejulia> xor(true, true)falsejulia> xor(true, missing)missingjulia> false ⊻ falsefalsejulia> [true; true; false] .⊻ [true; false; false]3-element BitVector: 0 1 0sourceBase.nand —Functionnand(x, y)⊼(x, y)Bitwise nand (not and) ofx andy. Implementsthree-valued logic, returningmissing if one of the arguments ismissing.
The infix operationa ⊼ b is a synonym fornand(a,b), and⊼ can be typed by tab-completing\nand or\barwedge in the Julia REPL.
Examples
julia> nand(true, false)truejulia> nand(true, true)falsejulia> nand(true, missing)missingjulia> false ⊼ falsetruejulia> [true; true; false] .⊼ [true; false; false]3-element BitVector: 0 1 1sourceBase.nor —Functionnor(x, y)⊽(x, y)Bitwise nor (not or) ofx andy. Implementsthree-valued logic, returningmissing if one of the arguments ismissing and the other is nottrue.
The infix operationa ⊽ b is a synonym fornor(a,b), and⊽ can be typed by tab-completing\nor or\barvee in the Julia REPL.
Examples
julia> nor(true, false)falsejulia> nor(true, true)falsejulia> nor(true, missing)falsejulia> false ⊽ falsetruejulia> false ⊽ missingmissingjulia> [true; true; false] .⊽ [true; false; false]3-element BitVector: 0 0 1sourceBase.:! —Function!f::FunctionPredicate function negation: when the argument of! is a function, it returns a composed function which computes the boolean negation off.
See also∘.
Examples
julia> str = "∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε""∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε"julia> filter(isletter, str)"εδxyδfxfyε"julia> filter(!isletter, str)"∀ > 0, ∃ > 0: |-| < ⇒ |()-()| < "Starting with Julia 1.9,!f returns aComposedFunction instead of an anonymous function.
!(x)Boolean not. Implementsthree-valued logic, returningmissing ifx ismissing.
See also~ for bitwise not.
Examples
julia> !truefalsejulia> !falsetruejulia> !missingmissingjulia> .![true false true]1×3 BitMatrix: 0 1 0source&& —Keywordx && yShort-circuiting boolean AND.
This is equivalent tox ? y : false: it returnsfalse ifx isfalse and the result of evaluatingy ifx istrue. Note that ify is an expression, it is only evaluated whenx istrue, which is called "short-circuiting" behavior.
Also,y does not need to have a boolean value. This means that(condition) && (statement) can be used as shorthand forif condition; statement; end for an arbitrarystatement.
See also&, the ternary operator? :, and the manual section oncontrol flow.
Examples
julia> x = 3;julia> x > 1 && x < 10 && x isa Inttruejulia> x < 0 && error("expected positive x")falsejulia> x > 0 && "not a boolean""not a boolean"source|| —Keywordx || yShort-circuiting boolean OR.
This is equivalent tox ? true : y: it returnstrue ifx istrue and the result of evaluatingy ifx isfalse. Note that ify is an expression, it is only evaluated whenx isfalse, which is called "short-circuiting" behavior.
Also,y does not need to have a boolean value. This means that(condition) || (statement) can be used as shorthand forif !(condition); statement; end for an arbitrarystatement.
Examples
julia> pi < 3 || ℯ < 3truejulia> false || true || println("neither is true!")truejulia> pi < 3 || "not a boolean""not a boolean"sourceBase.isapprox —Functionisapprox(x; kwargs...) / ≈(x; kwargs...)Create a function that compares its argument tox using≈, i.e. a function equivalent toy -> y ≈ x.
The keyword arguments supported here are the same as those in the 2-argumentisapprox.
isapprox(x, y; atol::Real=0, rtol::Real=atol>0 ? 0 : √eps, nans::Bool=false[, norm::Function])Inexact equality comparison. Two numbers compare equal if their relative distanceor their absolute distance is within tolerance bounds:isapprox returnstrue ifnorm(x-y) <= max(atol, rtol*max(norm(x), norm(y))). The defaultatol (absolute tolerance) is zero and the defaultrtol (relative tolerance) depends on the types ofx andy. The keyword argumentnans determines whether or not NaN values are considered equal (defaults to false).
For real or complex floating-point values, if anatol > 0 is not specified,rtol defaults to the square root ofeps of the type ofx ory, whichever is bigger (least precise). This corresponds to requiring equality of about half of the significant digits. Otherwise, e.g. for integer arguments or if anatol > 0 is supplied,rtol defaults to zero.
Thenorm keyword defaults toabs for numeric(x,y) and toLinearAlgebra.norm for arrays (where an alternativenorm choice is sometimes useful). Whenx andy are arrays, ifnorm(x-y) is not finite (i.e.±Inf orNaN), the comparison falls back to checking whether all elements ofx andy are approximately equal component-wise.
The binary operator≈ is equivalent toisapprox with the default arguments, andx ≉ y is equivalent to!isapprox(x,y).
Note thatx ≈ 0 (i.e., comparing to zero with the default tolerances) is equivalent tox == 0 since the defaultatol is0. In such cases, you should either supply an appropriateatol (or usenorm(x) ≤ atol) or rearrange your code (e.g. usex ≈ y rather thanx - y ≈ 0). It is not possible to pick a nonzeroatol automatically because it depends on the overall scaling (the "units") of your problem: for example, inx - y ≈ 0,atol=1e-9 is an absurdly small tolerance ifx is theradius of the Earth in meters, but an absurdly large tolerance ifx is theradius of a Hydrogen atom in meters.
Passing thenorm keyword argument when comparing numeric (non-array) arguments requires Julia 1.6 or later.
Examples
julia> isapprox(0.1, 0.15; atol=0.05)truejulia> isapprox(0.1, 0.15; rtol=0.34)truejulia> isapprox(0.1, 0.15; rtol=0.33)falsejulia> 0.1 + 1e-10 ≈ 0.1truejulia> 1e-10 ≈ 0falsejulia> isapprox(1e-10, 0, atol=1e-8)truejulia> isapprox([10.0^9, 1.0], [10.0^9, 2.0]) # using `norm`truesourceBase.sin —Methodsin(x::T) where {T <: Number} -> float(T)Compute sine ofx, wherex is in radians.
Throw aDomainError ifisinf(x), return aT(NaN) ifisnan(x).
See alsosind,sinpi,sincos,cis,asin.
Examples
julia> round.(sin.(range(0, 2pi, length=9)'), digits=3)1×9 Matrix{Float64}: 0.0 0.707 1.0 0.707 0.0 -0.707 -1.0 -0.707 -0.0julia> sind(45)0.7071067811865476julia> sinpi(1/4)0.7071067811865475julia> round.(sincos(pi/6), digits=3)(0.5, 0.866)julia> round(cis(pi/6), digits=3)0.866 + 0.5imjulia> round(exp(im*pi/6), digits=3)0.866 + 0.5imsourceBase.Math.sincos —Methodsincos(x::T) where T -> Tuple{float(T),float(T)}Simultaneously compute the sine and cosine ofx, wherex is in radians, returning a tuple(sine, cosine).
Throw aDomainError ifisinf(x), return a(T(NaN), T(NaN)) ifisnan(x).
Base.tan —Methodtan(x::T) where {T <: Number} -> float(T)Compute tangent ofx, wherex is in radians.
Throw aDomainError ifisinf(x), return aT(NaN) ifisnan(x).
See alsotanh.
Base.Math.sind —Functionsind(x::T) where T -> float(T)Compute sine ofx, wherex is in degrees. Ifx is a matrix,x needs to be a square matrix.
Throw aDomainError ifisinf(x), return aT(NaN) ifisnan(x).
Base.Math.cosd —Functioncosd(x::T) where T -> float(T)Compute cosine ofx, wherex is in degrees. Ifx is a matrix,x needs to be a square matrix.
Throw aDomainError ifisinf(x), return aT(NaN) ifisnan(x).
Base.Math.tand —Functiontand(x::T) where T -> float(T)Compute tangent ofx, wherex is in degrees. Ifx is a matrix,x needs to be a square matrix.
Throw aDomainError ifisinf(x), return aT(NaN) ifisnan(x).
Base.Math.sincosd —Functionsincosd(x::T) where T -> Tuple{float(T),float(T)}Simultaneously compute the sine and cosine ofx, wherex is in degrees, returning a tuple(sine, cosine).
Throw aDomainError ifisinf(x), return a(T(NaN), T(NaN)) tuple ifisnan(x).
Base.Math.sinpi —Functionsinpi(x::T) where T -> float(T)Compute$\sin(\pi x)$ more accurately thansin(pi*x), especially for largex.
Throw aDomainError ifisinf(x), return aT(NaN) ifisnan(x).
Base.Math.cospi —Functioncospi(x::T) where T -> float(T)Compute$\cos(\pi x)$ more accurately thancos(pi*x), especially for largex.
Throw aDomainError ifisinf(x), return aT(NaN) ifisnan(x).
Base.Math.tanpi —FunctionBase.Math.sincospi —Functionsincospi(x::T) where T -> Tuple{float(T),float(T)}Simultaneously computesinpi(x) andcospi(x) (the sine and cosine ofπ*x, wherex is in radians), returning a tuple(sine, cosine).
Throw aDomainError ifisinf(x), return a(T(NaN), T(NaN)) tuple ifisnan(x).
Base.tanh —Methodtanh(x)Compute hyperbolic tangent ofx.
Examples
julia> tanh.(-3:3f0) # Here 3f0 isa Float327-element Vector{Float32}: -0.9950548 -0.9640276 -0.7615942 0.0 0.7615942 0.9640276 0.9950548julia> tan.(im .* (1:3))3-element Vector{ComplexF64}: 0.0 + 0.7615941559557649im 0.0 + 0.9640275800758169im 0.0 + 0.9950547536867306imsourceBase.asin —Methodasin(x::T) where {T <: Number} -> float(T)Compute the inverse sine ofx, where the output is in radians.
Return aT(NaN) ifisnan(x).
See alsoasind for output in degrees.
Examples
julia> asin.((0, 1/2, 1))(0.0, 0.5235987755982989, 1.5707963267948966)julia> asind.((0, 1/2, 1))(0.0, 30.000000000000004, 90.0)sourceBase.atan —Methodatan(y)atan(y, x)Compute the inverse tangent ofy ory/x, respectively.
For one real argument, this is the angle in radians between the positivex-axis and the point (1,y), returning a value in the interval$[-\pi/2, \pi/2]$.
For two arguments, this is the angle in radians between the positivex-axis and the point (x,y), returning a value in the interval$[-\pi, \pi]$. This corresponds to a standardatan2 function. Note that by conventionatan(0.0,x) is defined as$\pi$ andatan(-0.0,x) is defined as$-\pi$ whenx < 0.
See alsoatand for degrees.
Examples
julia> rad2deg(atan(-1/√3))-30.000000000000004julia> rad2deg(atan(-1, √3))-30.000000000000004julia> rad2deg(atan(1, -√3))150.0sourceBase.Math.asind —Functionasind(x)Compute the inverse sine ofx, where the output is in degrees. Ifx is a matrix,x needs to be a square matrix.
Base.Math.acosd —Functionacosd(x)Compute the inverse cosine ofx, where the output is in degrees. Ifx is a matrix,x needs to be a square matrix.
Base.Math.atand —Functionatand(y::T) where T -> float(T)atand(y::T, x::S) where {T,S} -> promote_type(T,S)atand(y::AbstractMatrix{T}) where T -> AbstractMatrix{Complex{float(T)}}Compute the inverse tangent ofy ory/x, respectively, where the output is in degrees.
Return aNaN ifisnan(y) orisnan(x). The returnedNaN is either aT in the single argument version, or apromote_type(T,S) in the two argument version.
Base.Math.sec —Methodsec(x::T) where {T <: Number} -> float(T)Compute the secant ofx, wherex is in radians.
Throw aDomainError ifisinf(x), return aT(NaN) ifisnan(x).
Base.Math.csc —Methodcsc(x::T) where {T <: Number} -> float(T)Compute the cosecant ofx, wherex is in radians.
Throw aDomainError ifisinf(x), return aT(NaN) ifisnan(x).
Base.Math.cot —Methodcot(x::T) where {T <: Number} -> float(T)Compute the cotangent ofx, wherex is in radians.
Throw aDomainError ifisinf(x), return aT(NaN) ifisnan(x).
Base.Math.secd —Functionsecd(x::T) where {T <: Number} -> float(T)Compute the secant ofx, wherex is in degrees.
Throw aDomainError ifisinf(x), return aT(NaN) ifisnan(x).
Base.Math.cscd —Functioncscd(x::T) where {T <: Number} -> float(T)Compute the cosecant ofx, wherex is in degrees.
Throw aDomainError ifisinf(x), return aT(NaN) ifisnan(x).
Base.Math.cotd —Functioncotd(x::T) where {T <: Number} -> float(T)Compute the cotangent ofx, wherex is in degrees.
Throw aDomainError ifisinf(x), return aT(NaN) ifisnan(x).
Base.Math.asec —Methodasec(x::T) where {T <: Number} -> float(T)Compute the inverse secant ofx, where the output is in radians.
Base.Math.acsc —Methodacsc(x::T) where {T <: Number} -> float(T)Compute the inverse cosecant ofx, where the output is in radians.
Base.Math.acot —Methodacot(x::T) where {T <: Number} -> float(T)Compute the inverse cotangent ofx, where the output is in radians.
Base.Math.asecd —Functionasecd(x)Compute the inverse secant ofx, where the output is in degrees. Ifx is a matrix,x needs to be a square matrix.
Base.Math.acscd —Functionacscd(x)Compute the inverse cosecant ofx, where the output is in degrees. Ifx is a matrix,x needs to be a square matrix.
Base.Math.acotd —Functionacotd(x)Compute the inverse cotangent ofx, where the output is in degrees. Ifx is a matrix,x needs to be a square matrix.
Base.Math.sech —Methodsech(x::T) where {T <: Number} -> float(T)Compute the hyperbolic secant ofx.
Return aT(NaN) ifisnan(x).
Base.Math.csch —Methodcsch(x::T) where {T <: Number} -> float(T)Compute the hyperbolic cosecant ofx.
Return aT(NaN) ifisnan(x).
Base.Math.coth —Methodcoth(x::T) where {T <: Number} -> float(T)Compute the hyperbolic cotangent ofx.
Return aT(NaN) ifisnan(x).
Base.asinh —MethodBase.acosh —MethodBase.atanh —MethodBase.Math.asech —MethodBase.Math.acsch —MethodBase.Math.acoth —MethodBase.Math.sinc —FunctionBase.Math.cosc —FunctionBase.Math.deg2rad —FunctionBase.Math.rad2deg —FunctionBase.Math.hypot —Functionhypot(x, y)Compute the hypotenuse$\sqrt{|x|^2+|y|^2}$ avoiding overflow and underflow.
This code is an implementation of the algorithm described in: An Improved Algorithm forhypot(a,b) by Carlos F. Borges The article is available online at arXiv at the link https://arxiv.org/abs/1904.09481
hypot(x...)Compute the hypotenuse$\sqrt{\sum |x_i|^2}$ avoiding overflow and underflow.
See alsonorm in theLinearAlgebra standard library.
Examples
julia> a = Int64(10)^10;julia> hypot(a, a)1.4142135623730951e10julia> √(a^2 + a^2) # a^2 overflowsERROR: DomainError with -2.914184810805068e18:sqrt was called with a negative real argument but will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).Stacktrace:[...]julia> hypot(3, 4im)5.0julia> hypot(-5.7)5.7julia> hypot(3, 4im, 12.0)13.0julia> using LinearAlgebrajulia> norm([a, a, a, a]) == hypot(a, a, a, a)truesourceBase.log —Methodlog(x)Compute the natural logarithm ofx.
Throw aDomainError for negativeReal arguments. UseComplex arguments to obtainComplex results.
Examples
julia> log(2)0.6931471805599453julia> log(-3)ERROR: DomainError with -3.0:log was called with a negative real argument but will only return a complex result if called with a complex argument. Try log(Complex(x)).Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31[...]julia> log(-3 + 0im)1.0986122886681098 + 3.141592653589793imjulia> log(-3 - 0.0im)1.0986122886681098 - 3.141592653589793imjulia> log.(exp.(-1:1))3-element Vector{Float64}: -1.0 0.0 1.0sourceBase.log —Methodlog(b,x)Compute the baseb logarithm ofx. Throw aDomainError for negativeReal arguments.
Examples
julia> log(4,8)1.5julia> log(4,2)0.5julia> log(-2, 3)ERROR: DomainError with -2.0:log was called with a negative real argument but will only return a complex result if called with a complex argument. Try log(Complex(x)).Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31[...]julia> log(2, -3)ERROR: DomainError with -3.0:log was called with a negative real argument but will only return a complex result if called with a complex argument. Try log(Complex(x)).Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31[...]sourceBase.log2 —Functionlog2(x)Compute the logarithm ofx to base 2. Throw aDomainError for negativeReal arguments.
Examples
julia> log2(4)2.0julia> log2(10)3.321928094887362julia> log2(-2)ERROR: DomainError with -2.0:log2 was called with a negative real argument but will only return a complex result if called with a complex argument. Try log2(Complex(x)).Stacktrace: [1] throw_complex_domainerror(f::Symbol, x::Float64) at ./math.jl:31[...]julia> log2.(2.0 .^ (-1:1))3-element Vector{Float64}: -1.0 0.0 1.0sourceBase.log10 —Functionlog10(x)Compute the logarithm ofx to base 10. Throw aDomainError for negativeReal arguments.
Examples
julia> log10(100)2.0julia> log10(2)0.3010299956639812julia> log10(-2)ERROR: DomainError with -2.0:log10 was called with a negative real argument but will only return a complex result if called with a complex argument. Try log10(Complex(x)).Stacktrace: [1] throw_complex_domainerror(f::Symbol, x::Float64) at ./math.jl:31[...]sourceBase.log1p —Functionlog1p(x)Accurate natural logarithm of1+x. Throw aDomainError forReal arguments less than -1.
Examples
julia> log1p(-0.5)-0.6931471805599453julia> log1p(0)0.0julia> log1p(-2)ERROR: DomainError with -2.0:log1p was called with a real argument < -1 but will only return a complex result if called with a complex argument. Try log1p(Complex(x)).Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31[...]sourceBase.Math.frexp —Functionfrexp(val)Return(x,exp) such thatx has a magnitude in the interval$[1/2, 1)$ or 0, andval is equal to$x \times 2^{exp}$.
See alsosignificand,exponent,ldexp.
Examples
julia> frexp(6.0)(0.75, 3)julia> significand(6.0), exponent(6.0) # interval [1, 2) instead(1.5, 2)julia> frexp(0.0), frexp(NaN), frexp(-Inf) # exponent would give an error((0.0, 0), (NaN, 0), (-Inf, 0))sourceBase.exp10 —Functionexp10(x)Compute the base 10 exponential ofx, in other words$10^x$.
Examples
julia> exp10(2)100.0julia> 10^2100sourceBase.Math.ldexp —FunctionBase.Math.modf —Functionmodf(x)Return a tuple(fpart, ipart) of the fractional and integral parts of a number. Both parts have the same sign as the argument.
Examples
julia> modf(3.5)(0.5, 3.0)julia> modf(-3.5)(-0.5, -3.0)sourceBase.expm1 —Functionexpm1(x)Accurately compute$e^x-1$. It avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small values of x.
Examples
julia> expm1(1e-16)1.0e-16julia> exp(1e-16) - 10.0sourceBase.round —Functionround([T,] x, [r::RoundingMode])round(x, [r::RoundingMode]; digits::Integer=0, base = 10)round(x, [r::RoundingMode]; sigdigits::Integer, base = 10)Rounds the numberx.
Without keyword arguments,x is rounded to an integer value, returning a value of typeT, or of the same type ofx if noT is provided. AnInexactError will be thrown if the value is not representable byT, similar toconvert.
If thedigits keyword argument is provided, it rounds to the specified number of digits after the decimal place (or before if negative), in basebase.
If thesigdigits keyword argument is provided, it rounds to the specified number of significant digits, in basebase.
TheRoundingModer controls the direction of the rounding; the default isRoundNearest, which rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer. Note thatround may give incorrect results if the global rounding mode is changed (seerounding).
When rounding to a floating point type, will round to integers representable by that type (and Inf) rather than true integers. Inf is treated as one ulp greater than thefloatmax(T) for purposes of determining "nearest", similar toconvert.
Examples
julia> round(1.7)2.0julia> round(Int, 1.7)2julia> round(1.5)2.0julia> round(2.5)2.0julia> round(pi; digits=2)3.14julia> round(pi; digits=3, base=2)3.125julia> round(123.456; sigdigits=2)120.0julia> round(357.913; sigdigits=4, base=2)352.0julia> round(Float16, typemax(UInt128))Inf16julia> floor(Float16, typemax(UInt128))Float16(6.55e4)Rounding to specified digits in bases other than 2 can be inexact when operating on binary floating point numbers. For example, theFloat64 value represented by1.15 is actuallyless than 1.15, yet will be rounded to 1.2. For example:
julia> x = 1.151.15julia> big(1.15)1.149999999999999911182158029987476766109466552734375julia> x < 115//100truejulia> round(x, digits=1)1.2Extensions
To extendround to new numeric types, it is typically sufficient to defineBase.round(x::NewType, r::RoundingMode).
Base.Rounding.RoundingMode —TypeRoundingModeA type used for controlling the rounding mode of floating point operations (viarounding/setrounding functions), or as optional arguments for rounding to the nearest integer (via theround function).
Currently supported rounding modes are:
RoundNearest (default)RoundNearestTiesAwayRoundNearestTiesUpRoundToZeroRoundFromZeroRoundUpRoundDownRoundFromZero requires at least Julia 1.9. Prior versions supportRoundFromZero forBigFloats only.
Base.Rounding.RoundNearest —ConstantRoundNearestThe default rounding mode. Rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer.
sourceBase.Rounding.RoundNearestTiesAway —ConstantBase.Rounding.RoundNearestTiesUp —ConstantBase.Rounding.RoundToZero —ConstantBase.Rounding.RoundFromZero —ConstantRoundFromZeroRounds away from zero.
RoundFromZero requires at least Julia 1.9. Prior versions supportRoundFromZero forBigFloats only.
Examples
julia> BigFloat("1.0000000000000001", 5, RoundFromZero)1.06sourceBase.Rounding.RoundUp —ConstantBase.Rounding.RoundDown —ConstantBase.round —Methodround(z::Complex[, RoundingModeReal, [RoundingModeImaginary]])round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; digits=0, base=10)round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; sigdigits, base=10)Return the nearest integral value of the same type as the complex-valuedz toz, breaking ties using the specifiedRoundingModes. The firstRoundingMode is used for rounding the real components while the second is used for rounding the imaginary components.
RoundingModeReal andRoundingModeImaginary default toRoundNearest, which rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer.
Examples
julia> round(3.14 + 4.5im)3.0 + 4.0imjulia> round(3.14 + 4.5im, RoundUp, RoundNearestTiesUp)4.0 + 5.0imjulia> round(3.14159 + 4.512im; digits = 1)3.1 + 4.5imjulia> round(3.14159 + 4.512im; sigdigits = 3)3.14 + 4.51imsourceBase.ceil —Functionceil([T,] x)ceil(x; digits::Integer= [, base = 10])ceil(x; sigdigits::Integer= [, base = 10])ceil(x) returns the nearest integral value of the same type asx that is greater than or equal tox.
ceil(T, x) converts the result to typeT, throwing anInexactError if the ceiled value is not representable as aT.
Keywordsdigits,sigdigits andbase work as forround.
To supportceil for a new type, defineBase.round(x::NewType, ::RoundingMode{:Up}).
Base.floor —Functionfloor([T,] x)floor(x; digits::Integer= [, base = 10])floor(x; sigdigits::Integer= [, base = 10])floor(x) returns the nearest integral value of the same type asx that is less than or equal tox.
floor(T, x) converts the result to typeT, throwing anInexactError if the floored value is not representable aT.
Keywordsdigits,sigdigits andbase work as forround.
To supportfloor for a new type, defineBase.round(x::NewType, ::RoundingMode{:Down}).
Base.trunc —Functiontrunc([T,] x)trunc(x; digits::Integer= [, base = 10])trunc(x; sigdigits::Integer= [, base = 10])trunc(x) returns the nearest integral value of the same type asx whose absolute value is less than or equal to the absolute value ofx.
trunc(T, x) converts the result to typeT, throwing anInexactError if the truncated value is not representable aT.
Keywordsdigits,sigdigits andbase work as forround.
To supporttrunc for a new type, defineBase.round(x::NewType, ::RoundingMode{:ToZero}).
See also:%,floor,unsigned,unsafe_trunc.
Examples
julia> trunc(2.22)2.0julia> trunc(-2.22, digits=1)-2.2julia> trunc(Int, -2.22)-2sourceBase.unsafe_trunc —Functionunsafe_trunc(T, x)Return the nearest integral value of typeT whose absolute value is less than or equal to the absolute value ofx. If the value is not representable byT, an arbitrary value will be returned. See alsotrunc.
Examples
julia> unsafe_trunc(Int, -2.2)-2julia> unsafe_trunc(Int, NaN)-9223372036854775808sourceBase.minmax —FunctionBase.clamp —Functionclamp(x, T)::TClampx betweentypemin(T) andtypemax(T) and convert the result to typeT.
See alsotrunc.
Examples
julia> clamp(200, Int8)127julia> clamp(-200, Int8)-128julia> trunc(Int, 4pi^2)39sourceclamp(x, lo, hi)Returnx iflo <= x <= hi. Ifx > hi, returnhi. Ifx < lo, returnlo. Arguments are promoted to a common type.
Examples
julia> clamp.([pi, 1.0, big(10)], 2.0, 9.0)3-element Vector{BigFloat}: 3.141592653589793238462643383279502884197169399375105820974944592307816406286198 2.0 9.0julia> clamp.([11, 8, 5], 10, 6) # an example where lo > hi3-element Vector{Int64}: 6 6 10sourceBase.clamp! —Functionclamp!(array::AbstractArray, lo, hi)Restrict values inarray to the specified range, in-place. See alsoclamp.
Examples
julia> row = collect(-4:4)';julia> clamp!(row, 0, Inf)1×9 adjoint(::Vector{Int64}) with eltype Int64: 0 0 0 0 0 1 2 3 4julia> clamp.((-4:4)', 0, Inf)1×9 Matrix{Float64}: 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0sourceBase.abs —Functionabs(x)The absolute value ofx.
Whenabs is applied to signed integers, overflow may occur, resulting in the return of a negative value. This overflow occurs only whenabs is applied to the minimum representable value of a signed integer. That is, whenx == typemin(typeof(x)),abs(x) == x < 0, not-x as might be expected.
Examples
julia> abs(-3)3julia> abs(1 + im)1.4142135623730951julia> abs.(Int8[-128 -127 -126 0 126 127]) # overflow at typemin(Int8)1×6 Matrix{Int8}: -128 127 126 0 126 127julia> maximum(abs, [1, -2, 3, -4])4sourceBase.Checked —ModuleCheckedThe Checked module provides arithmetic functions for the built-in signed and unsigned Integer types which throw an error when an overflow occurs. They are named likechecked_sub,checked_div, etc. In addition,add_with_overflow,sub_with_overflow,mul_with_overflow return both the unchecked results and a boolean value denoting the presence of an overflow.
Base.Checked.checked_abs —FunctionBase.checked_abs(x)Calculatesabs(x), checking for overflow errors where applicable. For example, standard two's complement signed integers (e.g.Int) cannot representabs(typemin(Int)), thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
sourceBase.Checked.checked_neg —FunctionBase.checked_neg(x)Calculates-x, checking for overflow errors where applicable. For example, standard two's complement signed integers (e.g.Int) cannot represent-typemin(Int), thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
sourceBase.Checked.checked_add —FunctionBase.checked_add(x, y)Calculatesx+y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
sourceBase.Checked.checked_sub —FunctionBase.checked_sub(x, y)Calculatesx-y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
sourceBase.Checked.checked_mul —FunctionBase.checked_mul(x, y)Calculatesx*y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
sourceBase.Checked.checked_div —FunctionBase.checked_div(x, y)Calculatesdiv(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
sourceBase.Checked.checked_rem —FunctionBase.checked_rem(x, y)Calculatesx%y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
sourceBase.Checked.checked_fld —FunctionBase.checked_fld(x, y)Calculatesfld(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
sourceBase.Checked.checked_mod —FunctionBase.checked_mod(x, y)Calculatesmod(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
sourceBase.Checked.checked_cld —FunctionBase.checked_cld(x, y)Calculatescld(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
sourceBase.Checked.checked_pow —FunctionBase.checked_pow(x, y)Calculates^(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
sourceBase.Checked.add_with_overflow —FunctionBase.add_with_overflow(x, y) -> (r, f)Calculatesr = x+y, with the flagf indicating whether overflow has occurred.
Base.Checked.sub_with_overflow —FunctionBase.sub_with_overflow(x, y) -> (r, f)Calculatesr = x-y, with the flagf indicating whether overflow has occurred.
Base.Checked.mul_with_overflow —FunctionBase.mul_with_overflow(x, y) -> (r, f)Calculatesr = x*y, with the flagf indicating whether overflow has occurred.
Base.abs2 —FunctionBase.copysign —Functioncopysign(x, y) -> zReturnz which has the magnitude ofx and the same sign asy.
Examples
julia> copysign(1, -2)-1julia> copysign(-1, 2)1sourceBase.signbit —FunctionBase.flipsign —Functionflipsign(x, y)Returnx with its sign flipped ify is negative. For exampleabs(x) = flipsign(x,x).
Examples
julia> flipsign(5, 3)5julia> flipsign(5, -3)-5sourceBase.sqrt —Methodsqrt(x)Return$\sqrt{x}$.
Throw aDomainError for negativeReal arguments. UseComplex negative arguments instead to obtain aComplex result.
The prefix operator√ is equivalent tosqrt.
See also:hypot.
Examples
julia> sqrt(big(81))9.0julia> sqrt(big(-81))ERROR: DomainError with -81.0:NaN result for non-NaN input.Stacktrace: [1] sqrt(::BigFloat) at ./mpfr.jl:501[...]julia> sqrt(big(complex(-81)))0.0 + 9.0imjulia> sqrt(-81 - 0.0im) # -0.0im is below the branch cut0.0 - 9.0imjulia> .√(1:4)4-element Vector{Float64}: 1.0 1.4142135623730951 1.7320508075688772 2.0sourceBase.isqrt —FunctionBase.Math.cbrt —Methodcbrt(x::Real)Return the cube root ofx, i.e.$x^{1/3}$. Negative values are accepted (returning the negative real root when$x < 0$).
The prefix operator∛ is equivalent tocbrt.
Examples
julia> cbrt(big(27))3.0julia> cbrt(big(-27))-3.0sourceBase.Math.fourthroot —MethodBase.real —Functionreal(A::AbstractArray)Return an array containing the real part of each entry in arrayA.
Equivalent toreal.(A), except that wheneltype(A) <: RealA is returned without copying, and that whenA has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> real([1, 2im, 3 + 4im])3-element Vector{Int64}: 1 0 3julia> real(fill(2 - im))0-dimensional Array{Int64, 0}:2sourcereal(T::Type)Return the type that represents the real part of a value of typeT. e.g: forT == Complex{R}, returnsR. Equivalent totypeof(real(zero(T))).
Examples
julia> real(Complex{Int})Int64julia> real(Float64)Float64sourceBase.imag —Functionimag(A::AbstractArray)Return an array containing the imaginary part of each entry in arrayA.
Equivalent toimag.(A), except that whenA has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> imag([1, 2im, 3 + 4im])3-element Vector{Int64}: 0 2 4julia> imag(fill(2 - im))0-dimensional Array{Int64, 0}:-1sourceBase.reim —Functionreim(A::AbstractArray)Return a tuple of two arrays containing respectively the real and the imaginary part of each entry inA.
Equivalent to(real.(A), imag.(A)), except that wheneltype(A) <: RealA is returned without copying to represent the real part, and that whenA has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> reim([1, 2im, 3 + 4im])([1, 0, 3], [0, 2, 4])julia> reim(fill(2 - im))(fill(2), fill(-1))sourcereim(z)Return a tuple of the real and imaginary parts of the complex numberz.
Examples
julia> reim(1 + 3im)(1, 3)sourceBase.conj —Functionconj(A::AbstractArray)Return an array containing the complex conjugate of each entry in arrayA.
Equivalent toconj.(A), except that wheneltype(A) <: RealA is returned without copying, and that whenA has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> conj([1, 2im, 3 + 4im])3-element Vector{Complex{Int64}}: 1 + 0im 0 - 2im 3 - 4imjulia> conj(fill(2 - im))0-dimensional Array{Complex{Int64}, 0}:2 + 1imsourceBase.angle —Functionangle(z)Compute the phase angle in radians of a complex numberz.
Returns a number-pi ≤ angle(z) ≤ pi, and is thus discontinuous along the negative real axis.
Examples
julia> rad2deg(angle(1 + im))45.0julia> rad2deg(angle(1 - im))-45.0julia> rad2deg(angle(-1 + 1e-20im))180.0julia> rad2deg(angle(-1 - 1e-20im))-180.0sourceBase.binomial —Functionbinomial(x::Number, k::Integer)The generalized binomial coefficient, defined fork ≥ 0 by the polynomial
\[\frac{1}{k!} \prod_{j=0}^{k-1} (x - j)\]
Whenk < 0 it returns zero.
For the case of integerx, this is equivalent to the ordinary integer binomial coefficient
\[\binom{n}{k} = \frac{n!}{k! (n-k)!}\]
Further generalizations to non-integerk are mathematically possible, but involve the Gamma function and/or the beta function, which are not provided by the Julia standard library but are available in external packages such asSpecialFunctions.jl.
External links
binomial(n::Integer, k::Integer)Thebinomial coefficient$\binom{n}{k}$, being the coefficient of the$k$th term in the polynomial expansion of$(1+x)^n$.
If$n$ is non-negative, then it is the number of ways to choosek out ofn items:
\[\binom{n}{k} = \frac{n!}{k! (n-k)!}\]
where$n!$ is thefactorial function.
If$n$ is negative, then it is defined in terms of the identity
\[\binom{n}{k} = (-1)^k \binom{k-n-1}{k}\]
See alsofactorial.
Examples
julia> binomial(5, 3)10julia> factorial(5) ÷ (factorial(5-3) * factorial(3))10julia> binomial(-5, 3)-35External links
Base.factorial —Functionfactorial(n::Integer)Factorial ofn. Ifn is anInteger, the factorial is computed as an integer (promoted to at least 64 bits). Note that this may overflow ifn is not small, but you can usefactorial(big(n)) to compute the result exactly in arbitrary precision.
See alsobinomial.
Examples
julia> factorial(6)720julia> factorial(21)ERROR: OverflowError: 21 is too large to look up in the table; consider using `factorial(big(21))` insteadStacktrace:[...]julia> factorial(big(21))51090942171709440000External links
Base.gcd —Functiongcd(x, y...)Greatest common (positive) divisor (or zero if all arguments are zero). The arguments may be integer and rational numbers.
$a$ is a divisor of$b$ if there exists an integer$m$ such that$ma=b$.
Examples
julia> gcd(6, 9)3julia> gcd(6, -9)3julia> gcd(6, 0)6julia> gcd(0, 0)0julia> gcd(1//3, 2//3)1//3julia> gcd(1//3, -2//3)1//3julia> gcd(1//3, 2)1//3julia> gcd(0, 0, 10, 15)5sourceBase.lcm —Functionlcm(x, y...)Least common (positive) multiple (or zero if any argument is zero). The arguments may be integer and rational numbers.
$a$ is a multiple of$b$ if there exists an integer$m$ such that$a=mb$.
Examples
julia> lcm(2, 3)6julia> lcm(-2, 3)6julia> lcm(0, 3)0julia> lcm(0, 0)0julia> lcm(1//3, 2//3)2//3julia> lcm(1//3, -2//3)2//3julia> lcm(1//3, 2)2//1julia> lcm(1, 3, 5, 7)105sourceBase.gcdx —Functiongcdx(a, b...)Computes the greatest common (positive) divisor ofa andb and their Bézout coefficients, i.e. the integer coefficientsu andv that satisfy$u*a + v*b = d = gcd(a, b)$.$gcdx(a, b)$ returns$(d, u, v)$.
For more arguments than two, i.e.,gcdx(a, b, c, ...) the Bézout coefficients are computed recursively, returning a solution(d, u, v, w, ...) to$u*a + v*b + w*c + ... = d = gcd(a, b, c, ...)$.
The arguments may be integer and rational numbers.
Examples
julia> gcdx(12, 42)(6, -3, 1)julia> gcdx(240, 46)(2, -9, 47)julia> gcdx(15, 12, 20)(1, 7, -7, -1)Bézout coefficients arenot uniquely defined.gcdx returns the minimal Bézout coefficients that are computed by the extended Euclidean algorithm. (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.) For signed integers, these coefficientsu andv are minimal in the sense that$|u| < |b/d|$ and$|v| < |a/d|$. Furthermore, the signs ofu andv are chosen so thatd is positive. For unsigned integers, the coefficientsu andv might be near theirtypemax, and the identity then holds only via the unsigned integers' modulo arithmetic.
Base.ispow2 —Functionispow2(n::Number) -> BoolTest whethern is an integer power of two.
See alsocount_ones,prevpow,nextpow.
Examples
julia> ispow2(4)truejulia> ispow2(5)falsejulia> ispow2(4.5)falsejulia> ispow2(0.25)truejulia> ispow2(1//8)truesourceBase.nextpow —FunctionBase.prevpow —FunctionBase.nextprod —Functionnextprod(factors::Union{Tuple,AbstractVector}, n)Next integer greater than or equal ton that can be written as$\prod k_i^{p_i}$ for integers$p_1$,$p_2$, etcetera, for factors$k_i$ infactors.
Examples
julia> nextprod((2, 3), 105)108julia> 2^2 * 3^3108sourceBase.invmod —Functioninvmod(n::Integer, T) where {T <: Base.BitInteger}invmod(n::T) where {T <: Base.BitInteger}Compute the modular inverse ofn in the integer ring of typeT, i.e. modulo2^N whereN = 8*sizeof(T) (e.g.N = 32 forInt32). In other words, these methods satisfy the following identities:
n * invmod(n) == 1(n * invmod(n, T)) % T == 1(n % T) * invmod(n, T) == 1Note that* here is modular multiplication in the integer ring,T. This will throw an error ifn is even, because then it is not relatively prime with2^N and thus has no such inverse.
Specifying the modulus implied by an integer type as an explicit value is often inconvenient since the modulus is by definition too big to be represented by the type.
The modular inverse is computed much more efficiently than the general case using the algorithm described in https://arxiv.org/pdf/2204.04342.pdf.
sourceinvmod(n::Integer, m::Integer)Take the inverse ofn modulom:y such that$n y = 1 \pmod m$, and$div(y,m) = 0$. This will throw an error if$m = 0$, or if$gcd(n,m) \neq 1$.
Examples
julia> invmod(2, 5)3julia> invmod(2, 3)2julia> invmod(5, 6)5sourceBase.powermod —Functionpowermod(x::Integer, p::Integer, m)Compute$x^p \pmod m$.
Examples
julia> powermod(2, 6, 5)4julia> mod(2^6, 5)4julia> powermod(5, 2, 20)5julia> powermod(5, 2, 19)6julia> powermod(5, 3, 19)11sourceBase.ndigits —Functionndigits(n::Integer; base::Integer=10, pad::Integer=1)Compute the number of digits in integern written in basebase (base must not be in[-1, 0, 1]), optionally padded with zeros to a specified size (the result will never be less thanpad).
See alsodigits,count_ones.
Examples
julia> ndigits(0)1julia> ndigits(12345)5julia> ndigits(1022, base=16)3julia> string(1022, base=16)"3fe"julia> ndigits(123, pad=5)5julia> ndigits(-123)3sourceBase.add_sum —FunctionBase.widemul —Functionwidemul(x, y)Multiplyx andy, giving the result as a larger type.
See alsopromote,Base.add_sum.
Examples
julia> widemul(Float32(3.0), 4.0) isa BigFloattruejulia> typemax(Int8) * typemax(Int8)1julia> widemul(typemax(Int8), typemax(Int8)) # == 127^216129sourceBase.Math.evalpoly —Functionevalpoly(x, p)Evaluate the polynomial$\sum_k x^{k-1} p[k]$ for the coefficientsp[1],p[2], ...; that is, the coefficients are given in ascending order by power ofx. Loops are unrolled at compile time if the number of coefficients is statically known, i.e. whenp is aTuple. This function generates efficient code using Horner's method ifx is real, or using a Goertzel-like[DK62] algorithm ifx is complex.
Examples
julia> evalpoly(2, (1, 2, 3))17sourceBase.Math.@evalpoly —Macro@evalpoly(z, c...)Evaluate the polynomial$\sum_k z^{k-1} c[k]$ for the coefficientsc[1],c[2], ...; that is, the coefficients are given in ascending order by power ofz. This macro expands to efficient inline code that uses either Horner's method or, for complexz, a more efficient Goertzel-like algorithm.
See alsoevalpoly.
Examples
julia> @evalpoly(3, 1, 0, 1)10julia> @evalpoly(2, 1, 0, 1)5julia> @evalpoly(2, 1, 1, 1)7sourceBase.FastMath.@fastmath —Macro@fastmath exprExecute a transformed version of the expression, which calls functions that may violate strict IEEE semantics. This allows the fastest possible operation, but results are undefined – be careful when doing this, as it may change numerical results.
This sets theLLVM Fast-Math flags, and corresponds to the-ffast-math option in clang. Seethe notes on performance annotations for more details.
Examples
julia> @fastmath 1+23julia> @fastmath(sin(3))0.1411200080598672sourceSome unicode characters can be used to define new binary operators that support infix notation. For example⊗(x,y) = kron(x,y) defines the⊗ (otimes) function to be the Kronecker product, and one can call it as binary operator using infix syntax:C = A ⊗ B as well as with the usual prefix syntaxC = ⊗(A,B).
Other characters that support such extensions include \odot⊙ and \oplus⊕
The complete list is in the parser code:https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm
Those that are parsed like* (in terms of precedence) include* / ÷ % & ⋅ ∘ × |\\| ∩ ∧ ⊗ ⊘ ⊙ ⊚ ⊛ ⊠ ⊡ ⊓ ∗ ∙ ∤ ⅋ ≀ ⊼ ⋄ ⋆ ⋇ ⋉ ⋊ ⋋ ⋌ ⋏ ⋒ ⟑ ⦸ ⦼ ⦾ ⦿ ⧶ ⧷ ⨇ ⨰ ⨱ ⨲ ⨳ ⨴ ⨵ ⨶ ⨷ ⨸ ⨻ ⨼ ⨽ ⩀ ⩃ ⩄ ⩋ ⩍ ⩎ ⩑ ⩓ ⩕ ⩘ ⩚ ⩜ ⩞ ⩟ ⩠ ⫛ ⊍ ▷ ⨝ ⟕ ⟖ ⟗ and those that are parsed like+ include+ - |\|| ⊕ ⊖ ⊞ ⊟ |++| ∪ ∨ ⊔ ± ∓ ∔ ∸ ≏ ⊎ ⊻ ⊽ ⋎ ⋓ ⟇ ⧺ ⧻ ⨈ ⨢ ⨣ ⨤ ⨥ ⨦ ⨧ ⨨ ⨩ ⨪ ⨫ ⨬ ⨭ ⨮ ⨹ ⨺ ⩁ ⩂ ⩅ ⩊ ⩌ ⩏ ⩐ ⩒ ⩔ ⩖ ⩗ ⩛ ⩝ ⩡ ⩢ ⩣ There are many others that are related to arrows, comparisons, and powers.
Settings
This document was generated withDocumenter.jl version 1.16.0 onThursday 20 November 2025. Using Julia version 1.12.2.