Core.AbstractArray —TypeAbstractArray{T,N}Supertype forN-dimensional arrays (or array-like types) with elements of typeT.Array and other types are subtypes of this. See the manual section on theAbstractArray interface.
See also:AbstractVector,AbstractMatrix,eltype,ndims.
Base.AbstractVector —TypeAbstractVector{T}Supertype for one-dimensional arrays (or array-like types) with elements of typeT. Alias forAbstractArray{T,1}.
Base.AbstractMatrix —TypeAbstractMatrix{T}Supertype for two-dimensional arrays (or array-like types) with elements of typeT. Alias forAbstractArray{T,2}.
Base.AbstractVecOrMat —TypeCore.Array —TypeCore.Array —MethodArray{T}(undef, dims)Array{T,N}(undef, dims)Construct an uninitializedN-dimensionalArray containing elements of typeT.N can either be supplied explicitly, as inArray{T,N}(undef, dims), or be determined by the length or number ofdims.dims may be a tuple or a series of integer arguments corresponding to the lengths in each dimension. If the rankN is supplied explicitly, then it must match the length or number ofdims. Hereundef is theUndefInitializer.
Examples
julia> A = Array{Float64, 2}(undef, 2, 3) # N given explicitly2×3 Matrix{Float64}: 6.90198e-310 6.90198e-310 6.90198e-310 6.90198e-310 6.90198e-310 0.0julia> B = Array{Float64}(undef, 4) # N determined by the input4-element Vector{Float64}: 2.360075077e-314 NaN 2.2671131793e-314 2.299821756e-314julia> similar(B, 2, 4, 1) # use typeof(B), and the given size2×4×1 Array{Float64, 3}:[:, :, 1] = 2.26703e-314 2.26708e-314 0.0 2.80997e-314 0.0 2.26703e-314 2.26708e-314 0.0sourceCore.Array —MethodArray{T}(nothing, dims)Array{T,N}(nothing, dims)Construct anN-dimensionalArray containing elements of typeT, initialized withnothing entries. Element typeT must be able to hold these values, i.e.Nothing <: T.
Examples
julia> Array{Union{Nothing, String}}(nothing, 2)2-element Vector{Union{Nothing, String}}: nothing nothingjulia> Array{Union{Nothing, Int}}(nothing, 2, 3)2×3 Matrix{Union{Nothing, Int64}}: nothing nothing nothing nothing nothing nothingsourceCore.Array —MethodArray{T}(missing, dims)Array{T,N}(missing, dims)Construct anN-dimensionalArray containing elements of typeT, initialized withmissing entries. Element typeT must be able to hold these values, i.e.Missing <: T.
Examples
julia> Array{Union{Missing, String}}(missing, 2)2-element Vector{Union{Missing, String}}: missing missingjulia> Array{Union{Missing, Int}}(missing, 2, 3)2×3 Matrix{Union{Missing, Int64}}: missing missing missing missing missing missingsourceCore.UndefInitializer —TypeUndefInitializerSingleton type used in array initialization, indicating the array-constructor-caller would like an uninitialized array. See alsoundef, an alias forUndefInitializer().
Examples
julia> Array{Float64, 1}(UndefInitializer(), 3)3-element Vector{Float64}: 2.2752528595e-314 2.202942107e-314 2.275252907e-314sourceCore.undef —ConstantundefAlias forUndefInitializer(), which constructs an instance of the singleton typeUndefInitializer, used in array initialization to indicate the array-constructor-caller would like an uninitialized array.
Examples
julia> Array{Float64, 1}(undef, 3)3-element Vector{Float64}: 2.2752528595e-314 2.202942107e-314 2.275252907e-314sourceBase.Vector —TypeVector{T} <: AbstractVector{T}One-dimensional dense array with elements of typeT, often used to represent a mathematical vector. Alias forArray{T,1}.
See alsoempty,similar andzero for creating vectors.
Base.Vector —MethodBase.Vector —MethodBase.Vector —MethodBase.Matrix —TypeBase.Matrix —MethodBase.Matrix —MethodMatrix{T}(nothing, m, n)Construct aMatrix{T} of sizem×n, initialized withnothing entries. Element typeT must be able to hold these values, i.e.Nothing <: T.
Examples
julia> Matrix{Union{Nothing, String}}(nothing, 2, 3)2×3 Matrix{Union{Nothing, String}}: nothing nothing nothing nothing nothing nothingsourceBase.Matrix —MethodMatrix{T}(missing, m, n)Construct aMatrix{T} of sizem×n, initialized withmissing entries. Element typeT must be able to hold these values, i.e.Missing <: T.
Examples
julia> Matrix{Union{Missing, String}}(missing, 2, 3)2×3 Matrix{Union{Missing, String}}: missing missing missing missing missing missingsourceBase.VecOrMat —TypeCore.DenseArray —TypeDenseArray{T, N} <: AbstractArray{T,N}N-dimensional dense array with elements of typeT. The elements of a dense array are stored contiguously in memory.
Base.DenseVector —TypeBase.DenseMatrix —TypeBase.DenseVecOrMat —TypeBase.StridedArray —TypeStridedArray{T, N}A hard-codedUnion of common array types that follow thestrided array interface, with elements of typeT andN dimensions.
IfA is aStridedArray, then its elements are stored in memory with offsets, which may vary between dimensions but are constant within a dimension. For example,A could have stride 2 in dimension 1, and stride 3 in dimension 2. IncrementingA along dimensiond jumps in memory by [stride(A, d)] slots. Strided arrays are particularly important and useful because they can sometimes be passed directly as pointers to foreign language libraries like BLAS.
Base.StridedVector —TypeBase.StridedMatrix —TypeBase.StridedVecOrMat —TypeCore.GenericMemory —TypeGenericMemory{kind::Symbol, T, addrspace=Core.CPU} <: DenseVector{T}Fixed-sizeDenseVector{T}.
kind can currently be either:not_atomic or:atomic. For details on what:atomic implies, seeAtomicMemory
addrspace can currently only be set toCore.CPU. It is designed to permit extension by other systems such as GPUs, which might define values such as:
module CUDAconst Generic = bitcast(Core.AddrSpace{CUDA}, 0)const Global = bitcast(Core.AddrSpace{CUDA}, 1)endThe exact semantics of these other addrspaces is defined by the specific backend, but will error if the user is attempting to access these on the CPU.
sourceCore.Memory —TypeCore.memoryref —Functionmemoryref(::GenericMemory, index::Integer)memoryref(::GenericMemoryRef, index::Integer)Construct aGenericMemoryRef from a memory object and an offset index (1-based) which can also be negative. This always returns an inbounds object, and will throw an error if that is not possible (because the index would result in a shift out-of-bounds of the underlying memory).
memoryref(::GenericMemory)Construct aGenericMemoryRef from a memory object. This does not fail, but the resulting memory will point out-of-bounds if and only if the memory is empty.
Base.Slices —TypeSlices{P,SM,AX,S,N} <: AbstractSlices{S,N}AnAbstractArray of slices into a parent array over specified dimension(s), returning views that select all the data from the other dimension(s).
These should typically be constructed byeachslice,eachcol oreachrow.
parent(s::Slices) will return the parent array.
Base.RowSlices —TypeBase.ColumnSlices —TypeBase.getindex —Methodgetindex(type[, elements...])Construct a 1-d array of the specified type. This is usually called with the syntaxType[]. Element values can be specified usingType[a,b,c,...].
Examples
julia> Int8[1, 2, 3]3-element Vector{Int8}: 1 2 3julia> getindex(Int8, 1, 2, 3)3-element Vector{Int8}: 1 2 3sourceBase.zeros —FunctionBase.ones —Functionones([T=Float64,] dims::Tuple)ones([T=Float64,] dims...)Create anArray, with element typeT, of all ones with size specified bydims. See alsofill,zeros.
Examples
julia> ones(1,2)1×2 Matrix{Float64}: 1.0 1.0julia> ones(ComplexF64, 2, 3)2×3 Matrix{ComplexF64}: 1.0+0.0im 1.0+0.0im 1.0+0.0im 1.0+0.0im 1.0+0.0im 1.0+0.0imsourceBase.BitArray —TypeBitArray{N} <: AbstractArray{Bool, N}Space-efficientN-dimensional boolean array, using just one bit for each boolean value.
BitArrays pack up to 64 values into every 8 bytes, resulting in an 8x space efficiency overArray{Bool, N} and allowing some operations to work on 64 values at once.
By default, Julia returnsBitArrays frombroadcasting operations that generate boolean elements (including dotted-comparisons like.==) as well as from the functionstrues andfalses.
Due to its packed storage format, concurrent access to the elements of aBitArray where at least one of them is a write is not thread-safe.
Base.BitArray —MethodBase.BitArray —MethodBitArray(itr)Construct aBitArray generated by the given iterable object. The shape is inferred from theitr object.
Examples
julia> BitArray([1 0; 0 1])2×2 BitMatrix: 1 0 0 1julia> BitArray(x+y == 3 for x = 1:2, y = 1:3)2×3 BitMatrix: 0 1 0 1 0 0julia> BitArray(x+y == 3 for x = 1:2 for y = 1:3)6-element BitVector: 0 1 0 1 0 0sourceBase.trues —Functiontrues(dims)Create aBitArray with all values set totrue.
Examples
julia> trues(2,3)2×3 BitMatrix: 1 1 1 1 1 1sourceBase.falses —Functionfalses(dims)Create aBitArray with all values set tofalse.
Examples
julia> falses(2,3)2×3 BitMatrix: 0 0 0 0 0 0sourceBase.fill —Functionfill(value, dims::Tuple)fill(value, dims...)Create an array of sizedims with every location set tovalue.
For example,fill(1.0, (5,5)) returns a 5×5 array of floats, with1.0 in every location of the array.
The dimension lengthsdims may be specified as either a tuple or a sequence of arguments. AnN-length tuple orN arguments following thevalue specify anN-dimensional array. Thus, a common idiom for creating a zero-dimensional array with its only location set tox isfill(x).
Every location of the returned array is set to (and is thus=== to) thevalue that was passed; this means that if thevalue is itself modified, all elements of thefilled array will reflect that modification because they'restill that veryvalue. This is of no concern withfill(1.0, (5,5)) as thevalue1.0 is immutable and cannot itself be modified, but can be unexpected with mutable values like — most commonly — arrays. For example,fill([], 3) placesthe very same empty array in all three locations of the returned vector:
julia> v = fill([], 3)3-element Vector{Vector{Any}}: [] [] []julia> v[1] === v[2] === v[3]truejulia> value = v[1]Any[]julia> push!(value, 867_5309)1-element Vector{Any}: 8675309julia> v3-element Vector{Vector{Any}}: [8675309] [8675309] [8675309]To create an array of many independent inner arrays, use acomprehension instead. This creates a new and distinct array on each iteration of the loop:
julia> v2 = [[] for _ in 1:3]3-element Vector{Vector{Any}}: [] [] []julia> v2[1] === v2[2] === v2[3]falsejulia> push!(v2[1], 8675309)1-element Vector{Any}: 8675309julia> v23-element Vector{Vector{Any}}: [8675309] [] []See also:fill!,zeros,ones,similar.
Examples
julia> fill(1.0, (2,3))2×3 Matrix{Float64}: 1.0 1.0 1.0 1.0 1.0 1.0julia> fill(42)0-dimensional Array{Int64, 0}:42julia> A = fill(zeros(2), 2) # sets both elements to the same [0.0, 0.0] vector2-element Vector{Vector{Float64}}: [0.0, 0.0] [0.0, 0.0]julia> A[1][1] = 42; # modifies the filled value to be [42.0, 0.0]julia> A # both A[1] and A[2] are the very same vector2-element Vector{Vector{Float64}}: [42.0, 0.0] [42.0, 0.0]sourceBase.fill! —Functionfill!(A, x)Fill arrayA with the valuex. Ifx is an object reference, all elements will refer to the same object.fill!(A, Foo()) will returnA filled with the result of evaluatingFoo() once.
Examples
julia> A = zeros(2,3)2×3 Matrix{Float64}: 0.0 0.0 0.0 0.0 0.0 0.0julia> fill!(A, 2.)2×3 Matrix{Float64}: 2.0 2.0 2.0 2.0 2.0 2.0julia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(undef, 3), a); a[1] = 2; A3-element Vector{Vector{Int64}}: [2, 1, 1] [2, 1, 1] [2, 1, 1]julia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(undef, 3), f())3-element Vector{Int64}: 1 1 1sourceBase.empty —Functionempty(a::AbstractDict, [index_type=keytype(a)], [value_type=valtype(a)])Create an emptyAbstractDict container which can accept indices of typeindex_type and values of typevalue_type. The second and third arguments are optional and default to the input'skeytype andvaltype, respectively. (If only one of the two types is specified, it is assumed to be thevalue_type, and theindex_type we default tokeytype(a)).
CustomAbstractDict subtypes may choose which specific dictionary type is best suited to return for the given index and value types, by specializing on the three-argument signature. The default is to return an emptyDict.
empty(v::AbstractVector, [eltype])Create an empty vector similar tov, optionally changing theeltype.
See also:empty!,isempty,isassigned.
Examples
julia> empty([1.0, 2.0, 3.0])Float64[]julia> empty([1.0, 2.0, 3.0], String)String[]sourceBase.similar —Functionsimilar(A::AbstractSparseMatrixCSC{Tv,Ti}, [::Type{TvNew}, ::Type{TiNew}, m::Integer, n::Integer]) where {Tv,Ti}Create an uninitialized mutable array with the given element type, index type, and size, based upon the given sourceSparseMatrixCSC. The new sparse matrix maintains the structure of the original sparse matrix, except in the case where dimensions of the output matrix are different from the output.
The output matrix has zeros in the same locations as the input, but uninitialized values for the nonzero locations.
similar(storagetype, axes)Create an uninitialized mutable array analogous to that specified bystoragetype, but withaxes specified by the last argument.
Examples:
similar(Array{Int}, axes(A))creates an array that "acts like" anArray{Int} (and might indeed be backed by one), but which is indexed identically toA. IfA has conventional indexing, this will be identical toArray{Int}(undef, size(A)), but ifA has unconventional indexing then the indices of the result will matchA.
similar(BitArray, (axes(A, 2),))would create a 1-dimensional logical array whose indices match those of the columns ofA.
similar(array, [element_type=eltype(array)], [dims=size(array)])Create an uninitialized mutable array with the given element type and size, based upon the given source array. The second and third arguments are both optional, defaulting to the given array'seltype andsize. The dimensions may be specified either as a single tuple argument or as a series of integer arguments.
Custom AbstractArray subtypes may choose which specific array type is best-suited to return for the given element type and dimensionality. If they do not specialize this method, the default is anArray{element_type}(undef, dims...).
For example,similar(1:10, 1, 4) returns an uninitializedArray{Int,2} since ranges are neither mutable nor support 2 dimensions:
julia> similar(1:10, 1, 4)1×4 Matrix{Int64}: 4419743872 4374413872 4419743888 0Conversely,similar(trues(10,10), 2) returns an uninitializedBitVector with two elements sinceBitArrays are both mutable and can support 1-dimensional arrays:
julia> similar(trues(10,10), 2)2-element BitVector: 0 0SinceBitArrays can only store elements of typeBool, however, if you request a different element type it will create a regularArray instead:
julia> similar(falses(10), Float64, 2, 4)2×4 Matrix{Float64}: 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314See also:undef,isassigned.
Base.ndims —FunctionBase.size —Functionsize(A::AbstractArray, [dim])Return a tuple containing the dimensions ofA. Optionally you can specify a dimension to just get the length of that dimension.
Note thatsize may not be defined for arrays with non-standard indices, in which caseaxes may be useful. See the manual chapter onarrays with custom indices.
See also:length,ndims,eachindex,sizeof.
Examples
julia> A = fill(1, (2,3,4));julia> size(A)(2, 3, 4)julia> size(A, 2)3sourceBase.axes —Methodaxes(A, d)Return the valid range of indices for arrayA along dimensiond.
See alsosize, and the manual chapter onarrays with custom indices.
Examples
julia> A = fill(1, (5,6,7));julia> axes(A, 2)Base.OneTo(6)julia> axes(A, 4) == 1:1 # all dimensions d > ndims(A) have size 1trueUsage note
Each of the indices has to be anAbstractUnitRange{<:Integer}, but at the same time can be a type that uses custom indices. So, for example, if you need a subset, use generalized indexing constructs likebegin/end orfirstindex/lastindex:
ix = axes(v, 1)ix[2:end] # will work for eg Vector, but may fail in generalix[(begin+1):end] # works for generalized indexessourceBase.length —Methodlength(A::AbstractArray)Return the number of elements in the array, defaults toprod(size(A)).
Examples
julia> length([1, 2, 3, 4])4julia> length([1 2; 3 4])4sourceBase.keys —Methodkeys(a::AbstractArray)Return an efficient array describing all valid indices fora arranged in the shape ofa itself.
The keys of 1-dimensional arrays (vectors) are integers, whereas all other N-dimensional arrays useCartesianIndex to describe their locations. Often the special array typesLinearIndices andCartesianIndices are used to efficiently represent these arrays of integers andCartesianIndexes, respectively.
Note that thekeys of an array might not be the most efficient index type; for maximum performance useeachindex instead.
Examples
julia> keys([4, 5, 6])3-element LinearIndices{1, Tuple{Base.OneTo{Int64}}}: 1 2 3julia> keys([4 5; 6 7])CartesianIndices((2, 2))sourceBase.eachindex —Functioneachindex(A...)eachindex(::IndexStyle, A::AbstractArray...)Create an iterable object for visiting each index of anAbstractArrayA in an efficient manner. For array types that have opted into fast linear indexing (likeArray), this is simply the range1:length(A) if they use 1-based indexing. For array types that have not opted into fast linear indexing, a specialized Cartesian range is typically returned to efficiently index into the array with indices specified for every dimension.
In generaleachindex accepts arbitrary iterables, including strings and dictionaries, and returns an iterator object supporting arbitrary index types (e.g. unevenly spaced or non-integer indices).
IfA isAbstractArray it is possible to explicitly specify the style of the indices that should be returned byeachindex by passing a value havingIndexStyle type as its first argument (typicallyIndexLinear() if linear indices are required orIndexCartesian() if Cartesian range is wanted).
If you supply more than oneAbstractArray argument,eachindex will create an iterable object that is fast for all arguments (typically aUnitRange if all inputs have fast linear indexing, aCartesianIndices otherwise). If the arrays have different sizes and/or dimensionalities, aDimensionMismatch exception will be thrown.
See alsopairs(A) to iterate over indices and values together, andaxes(A, 2) for valid indices along one dimension.
Examples
julia> A = [10 20; 30 40];julia> for i in eachindex(A) # linear indexing println("A[", i, "] == ", A[i]) endA[1] == 10A[2] == 30A[3] == 20A[4] == 40julia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing println(i) endCartesianIndex(1, 1)CartesianIndex(2, 1)sourceBase.IndexStyle —TypeIndexStyle(A)IndexStyle(typeof(A))IndexStyle specifies the "native indexing style" for arrayA. When you define a newAbstractArray type, you can choose to implement either linear indexing (withIndexLinear) or cartesian indexing. If you decide to only implement linear indexing, then you must set this trait for your array type:
Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()The default isIndexCartesian().
Julia's internal indexing machinery will automatically (and invisibly) recompute all indexing operations into the preferred style. This allows users to access elements of your array using any indexing style, even when explicit methods have not been provided.
If you define both styles of indexing for yourAbstractArray, this trait can be used to select the most performant indexing style. Some methods check this trait on their inputs, and dispatch to different algorithms depending on the most efficient access pattern. In particular,eachindex creates an iterator whose type depends on the setting of this trait.
Base.IndexLinear —TypeIndexLinear()Subtype ofIndexStyle used to describe arrays which are optimally indexed by one linear index.
A linear indexing style uses one integer index to describe the position in the array (even if it's a multidimensional array) and column-major ordering is used to efficiently access the elements. This means that requestingeachindex from an array that isIndexLinear will return a simple one-dimensional range, even if it is multidimensional.
A custom array that reports itsIndexStyle asIndexLinear only needs to implement indexing (and indexed assignment) with a singleInt index; all other indexing expressions — including multidimensional accesses — will be recomputed to the linear index. For example, ifA were a2×3 custom matrix with linear indexing, and we referencedA[1, 3], this would be recomputed to the equivalent linear index and callA[5] since1 + 2*(3 - 1) = 5.
See alsoIndexCartesian.
Base.IndexCartesian —TypeIndexCartesian()Subtype ofIndexStyle used to describe arrays which are optimally indexed by a Cartesian index. This is the default for new customAbstractArray subtypes.
A Cartesian indexing style uses multiple integer indices to describe the position in a multidimensional array, with exactly one index per dimension. This means that requestingeachindex from an array that isIndexCartesian will return a range ofCartesianIndices.
AN-dimensional custom array that reports itsIndexStyle asIndexCartesian needs to implement indexing (and indexed assignment) with exactlyNInt indices; all other indexing expressions — including linear indexing — will be recomputed to the equivalent Cartesian location. For example, ifA were a2×3 custom matrix with cartesian indexing, and we referencedA[5], this would be recomputed to the equivalent Cartesian index and callA[1, 3] since5 = 1 + 2*(3 - 1).
It is significantly more expensive to compute Cartesian indices from a linear index than it is to go the other way. The former operation requires division — a very costly operation — whereas the latter only uses multiplication and addition and is essentially free. This asymmetry means it is far more costly to use linear indexing with anIndexCartesian array than it is to use Cartesian indexing with anIndexLinear array.
See alsoIndexLinear.
Base.conj! —FunctionBase.stride —FunctionBase.strides —FunctionSee also thedot syntax for vectorizing functions; for example,f.(args...) implicitly callsbroadcast(f, args...). Rather than relying on "vectorized" methods of functions likesin to operate on arrays, you should usesin.(a) to vectorize viabroadcast.
Base.Broadcast.broadcast —Functionbroadcast(f, As...)Broadcast the functionf over the arrays, tuples, collections,Refs and/or scalarsAs.
Broadcasting applies the functionf over the elements of the container arguments and the scalars themselves inAs. Singleton and missing dimensions are expanded to match the extents of the other arguments by virtually repeating the value. By default, only a limited number of types are considered scalars, includingNumbers,Strings,Symbols,Types,Functions and some common singletons likemissing andnothing. All other arguments are iterated over or indexed into elementwise.
The resulting container type is established by the following rules:
Array, but custom container types can define their own implementation and promotion-like rules to customize the result when they appear as arguments.collect.A special syntax exists for broadcasting:f.(args...) is equivalent tobroadcast(f, args...), and nestedf.(g.(args...)) calls are fused into a single broadcast loop.
Examples
julia> A = [1, 2, 3, 4, 5]5-element Vector{Int64}: 1 2 3 4 5julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]5×2 Matrix{Int64}: 1 2 3 4 5 6 7 8 9 10julia> broadcast(+, A, B)5×2 Matrix{Int64}: 2 3 5 6 8 9 11 12 14 15julia> parse.(Int, ["1", "2"])2-element Vector{Int64}: 1 2julia> abs.((1, -2))(1, 2)julia> broadcast(+, 1.0, (0, -2.0))(1.0, -1.0)julia> (+).([[0,2], [1,3]], Ref{Vector{Int}}([1,-1]))2-element Vector{Vector{Int64}}: [1, 1] [2, 2]julia> string.(("one","two","three","four"), ": ", 1:4)4-element Vector{String}: "one: 1" "two: 2" "three: 3" "four: 4"sourceBase.Broadcast.broadcast! —Functionbroadcast!(f, dest, As...)Likebroadcast, but store the result ofbroadcast(f, As...) in thedest array. Note thatdest is only used to store the result, and does not supply arguments tof unless it is also listed in theAs, as inbroadcast!(f, A, A, B) to performA[:] = broadcast(f, A, B).
Examples
julia> A = [1.0; 0.0]; B = [0.0; 0.0];julia> broadcast!(+, B, A, (0, -2.0));julia> B2-element Vector{Float64}: 1.0 -2.0julia> A2-element Vector{Float64}: 1.0 0.0julia> broadcast!(+, A, A, (0, -2.0));julia> A2-element Vector{Float64}: 1.0 -2.0sourceBase.Broadcast.@__dot__ —Macro@. exprConvert every function call or operator inexpr into a "dot call" (e.g. convertf(x) tof.(x)), and convert every assignment inexpr to a "dot assignment" (e.g. convert+= to.+=).
If you want toavoid adding dots for selected function calls inexpr, splice those function calls in with$. For example,@. sqrt(abs($sort(x))) is equivalent tosqrt.(abs.(sort(x))) (no dot forsort).
(@. is equivalent to a call to@__dot__.)
Examples
julia> x = 1.0:3.0; y = similar(x);julia> @. y = x + 3 * sin(x)3-element Vector{Float64}: 3.5244129544236893 4.727892280477045 3.4233600241796016sourceBase.Broadcast.BroadcastFunction —TypeBroadcastFunction{F} <: FunctionRepresents the "dotted" version of an operator, which broadcasts the operator over its arguments, soBroadcastFunction(op) is functionally equivalent to(x...) -> (op).(x...).
Can be created by just passing an operator preceded by a dot to a higher-order function.
Examples
julia> a = [[1 3; 2 4], [5 7; 6 8]];julia> b = [[9 11; 10 12], [13 15; 14 16]];julia> map(.*, a, b)2-element Vector{Matrix{Int64}}: [9 33; 20 48] [65 105; 84 128]julia> Base.BroadcastFunction(+)(a, b) == a .+ btruesourceFor specializing broadcast on custom types, see
Base.Broadcast.BroadcastStyle —TypeBroadcastStyle is an abstract type and trait-function used to determine behavior of objects under broadcasting.BroadcastStyle(typeof(x)) returns the style associated withx. To customize the broadcasting behavior of a type, one can declare a style by defining a type/method pair
struct MyContainerStyle <: BroadcastStyle endBase.BroadcastStyle(::Type{<:MyContainer}) = MyContainerStyle()One then writes method(s) (at leastsimilar) operating onBroadcasted{MyContainerStyle}. There are also several pre-defined subtypes ofBroadcastStyle that you may be able to leverage; see theInterfaces chapter for more information.
Base.Broadcast.AbstractArrayStyle —TypeBroadcast.AbstractArrayStyle{N} <: BroadcastStyle is the abstract supertype for any style associated with anAbstractArray type. TheN parameter is the dimensionality, which can be handy for AbstractArray types that only support specific dimensionalities:
struct SparseMatrixStyle <: Broadcast.AbstractArrayStyle{2} endBase.BroadcastStyle(::Type{<:SparseMatrixCSC}) = SparseMatrixStyle()ForAbstractArray types that support arbitrary dimensionality,N can be set toAny:
struct MyArrayStyle <: Broadcast.AbstractArrayStyle{Any} endBase.BroadcastStyle(::Type{<:MyArray}) = MyArrayStyle()In cases where you want to be able to mix multipleAbstractArrayStyles and keep track of dimensionality, your style needs to support aVal constructor:
struct MyArrayStyleDim{N} <: Broadcast.AbstractArrayStyle{N} end(::Type{<:MyArrayStyleDim})(::Val{N}) where N = MyArrayStyleDim{N}()Note that if two or moreAbstractArrayStyle subtypes conflict, broadcasting machinery will fall back to producingArrays. If this is undesirable, you may need to define binaryBroadcastStyle rules to control the output type.
See alsoBroadcast.DefaultArrayStyle.
Base.Broadcast.ArrayStyle —TypeBroadcast.ArrayStyle{MyArrayType}() is aBroadcastStyle indicating that an object behaves as an array for broadcasting. It presents a simple way to constructBroadcast.AbstractArrayStyles for specificAbstractArray container types. Broadcast styles created this way lose track of dimensionality; if keeping track is important for your type, you should create your own customBroadcast.AbstractArrayStyle.
Base.Broadcast.DefaultArrayStyle —TypeBroadcast.DefaultArrayStyle{N}() is aBroadcastStyle indicating that an object behaves as anN-dimensional array for broadcasting. Specifically,DefaultArrayStyle is used for anyAbstractArray type that hasn't defined a specialized style, and in the absence of overrides from otherbroadcast arguments the resulting output type isArray. When there are multiple inputs tobroadcast,DefaultArrayStyle "loses" to any otherBroadcast.ArrayStyle.
Base.Broadcast.broadcastable —FunctionBroadcast.broadcastable(x)Return eitherx or an object likex such that it supportsaxes, indexing, and its type supportsndims.
Ifx supports iteration, the returned value should have the sameaxes and indexing behaviors ascollect(x).
Ifx is not anAbstractArray but it supportsaxes, indexing, and its type supportsndims, thenbroadcastable(::typeof(x)) may be implemented to just return itself. Further, ifx defines its ownBroadcastStyle, then it must define itsbroadcastable method to return itself for the custom style to have any effect.
Examples
julia> Broadcast.broadcastable([1,2,3]) # like `identity` since arrays already support axes and indexing3-element Vector{Int64}: 1 2 3julia> Broadcast.broadcastable(Int) # Types don't support axes, indexing, or iteration but are commonly used as scalarsBase.RefValue{Type{Int64}}(Int64)julia> Broadcast.broadcastable("hello") # Strings break convention of matching iteration and act like a scalar insteadBase.RefValue{String}("hello")sourceBase.Broadcast.combine_axes —Functioncombine_axes(As...) -> TupleDetermine the result axes for broadcasting across all values inAs.
julia> Broadcast.combine_axes([1], [1 2; 3 4; 5 6])(Base.OneTo(3), Base.OneTo(2))julia> Broadcast.combine_axes(1, 1, 1)()sourceBase.Broadcast.combine_styles —Functioncombine_styles(cs...) -> BroadcastStyleDecides whichBroadcastStyle to use for any number of value arguments. UsesBroadcastStyle to get the style for each argument, and usesresult_style to combine styles.
Examples
julia> Broadcast.combine_styles([1], [1 2; 3 4])Base.Broadcast.DefaultArrayStyle{2}()sourceBase.Broadcast.result_style —Functionresult_style(s1::BroadcastStyle[, s2::BroadcastStyle]) -> BroadcastStyleTakes one or twoBroadcastStyles and combines them usingBroadcastStyle to determine a commonBroadcastStyle.
Examples
julia> Broadcast.result_style(Broadcast.DefaultArrayStyle{0}(), Broadcast.DefaultArrayStyle{3}())Base.Broadcast.DefaultArrayStyle{3}()julia> Broadcast.result_style(Broadcast.Unknown(), Broadcast.DefaultArrayStyle{1}())Base.Broadcast.DefaultArrayStyle{1}()sourceBase.getindex —Methodgetindex(A, inds...)Return a subset of arrayA as selected by the indicesinds.
Each index may be anysupported index type, such as anInteger,CartesianIndex,range, orarray of supported indices. A: may be used to select all elements along a specific dimension, and a boolean array (e.g. anArray{Bool} or aBitArray) may be used to filter for elements where the corresponding index istrue.
Wheninds selects multiple elements, this function returns a newly allocated array. To index multiple elements without making a copy, useview instead.
See the manual section onarray indexing for details.
Examples
julia> A = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> getindex(A, 1)1julia> getindex(A, [2, 1])2-element Vector{Int64}: 3 1julia> getindex(A, 2:4)3-element Vector{Int64}: 3 2 4julia> getindex(A, 2, 1)3julia> getindex(A, CartesianIndex(2, 1))3julia> getindex(A, :, 2)2-element Vector{Int64}: 2 4julia> getindex(A, 2, :)2-element Vector{Int64}: 3 4julia> getindex(A, A .> 2)2-element Vector{Int64}: 3 4sourceBase.setindex! —Methodsetindex!(A, X, inds...)A[inds...] = XStore values from arrayX within some subset ofA as specified byinds. The syntaxA[inds...] = X is equivalent to(setindex!(A, X, inds...); X).
Examples
julia> A = zeros(2,2);julia> setindex!(A, [10, 20], [1, 2]);julia> A[[3, 4]] = [30, 40];julia> A2×2 Matrix{Float64}: 10.0 30.0 20.0 40.0sourceBase.nextind —Functionnextind(A, i)Return the index afteri inA. The returned index is often equivalent toi + 1 for an integeri. This function can be useful for generic code.
The returned index might be out of bounds. Consider usingcheckbounds.
See also:prevind.
Examples
julia> x = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> nextind(x, 1) # valid result2julia> nextind(x, 4) # invalid result5julia> nextind(x, CartesianIndex(1, 1)) # valid resultCartesianIndex(2, 1)julia> nextind(x, CartesianIndex(2, 2)) # invalid resultCartesianIndex(1, 3)sourceBase.prevind —Functionprevind(A, i)Return the index beforei inA. The returned index is often equivalent toi - 1 for an integeri. This function can be useful for generic code.
The returned index might be out of bounds. Consider usingcheckbounds.
See also:nextind.
Examples
julia> x = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> prevind(x, 4) # valid result3julia> prevind(x, 1) # invalid result0julia> prevind(x, CartesianIndex(2, 2)) # valid resultCartesianIndex(1, 2)julia> prevind(x, CartesianIndex(1, 1)) # invalid resultCartesianIndex(2, 0)sourceBase.copyto! —Methodcopyto!(dest, Rdest::CartesianIndices, src, Rsrc::CartesianIndices) -> destCopy the block ofsrc in the range ofRsrc to the block ofdest in the range ofRdest. The sizes of the two regions must match.
Examples
julia> A = zeros(5, 5);julia> B = [1 2; 3 4];julia> Ainds = CartesianIndices((2:3, 2:3));julia> Binds = CartesianIndices(B);julia> copyto!(A, Ainds, B, Binds)5×5 Matrix{Float64}: 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 0.0 0.0 0.0 3.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0sourceBase.copy! —Functioncopy!(dest::AbstractMatrix, src::UniformScaling)Copies aUniformScaling onto a matrix.
copy!(dst, src) -> dstIn-placecopy ofsrc intodst, discarding any pre-existing elements indst. Ifdst andsrc are of the same type,dst == src should hold after the call. Ifdst andsrc are vector types, they must have equal offset. Ifdst andsrc are multidimensional arrays, they must have equalaxes.
See alsocopyto!.
When operating on vector types, ifdst andsrc are not of the same length,dst is resized tolength(src) prior to thecopy.
This method requires at least Julia 1.1. In Julia 1.0 this method is available from theFuture standard library asFuture.copy!.
Base.isassigned —Functionisassigned(array, i) -> BoolTest whether the given array has a value associated with indexi. Returnfalse if the index is out of bounds, or has an undefined reference.
Examples
julia> isassigned(rand(3, 3), 5)truejulia> isassigned(rand(3, 3), 3 * 3 + 1)falsejulia> mutable struct Foo endjulia> v = similar(rand(3), Foo)3-element Vector{Foo}: #undef #undef #undefjulia> isassigned(v, 1)falsesourceBase.Colon —TypeColon()Colons (:) are used to signify indexing entire objects or dimensions at once.
Very few operations are defined on Colons directly; instead they are converted byto_indices to an internal vector type (Base.Slice) to represent the collection of indices they span before being used.
The singleton instance ofColon is also a function used to construct ranges; see:.
Base.IteratorsMD.CartesianIndex —TypeCartesianIndex(i, j, k...) -> ICartesianIndex((i, j, k...)) -> ICreate a multidimensional indexI, which can be used for indexing a multidimensional arrayA. In particular,A[I] is equivalent toA[i,j,k...]. One can freely mix integer andCartesianIndex indices; for example,A[Ipre, i, Ipost] (whereIpre andIpost areCartesianIndex indices andi is anInt) can be a useful expression when writing algorithms that work along a single dimension of an array of arbitrary dimensionality.
ACartesianIndex is sometimes produced byeachindex, and always when iterating with an explicitCartesianIndices.
AnI::CartesianIndex is treated as a "scalar" (not a container) forbroadcast. In order to iterate over the components of aCartesianIndex, convert it to a tuple withTuple(I).
Examples
julia> A = reshape(Vector(1:16), (2, 2, 2, 2))2×2×2×2 Array{Int64, 4}:[:, :, 1, 1] = 1 3 2 4[:, :, 2, 1] = 5 7 6 8[:, :, 1, 2] = 9 11 10 12[:, :, 2, 2] = 13 15 14 16julia> A[CartesianIndex((1, 1, 1, 1))]1julia> A[CartesianIndex((1, 1, 1, 2))]9julia> A[CartesianIndex((1, 1, 2, 1))]5Using aCartesianIndex as a "scalar" forbroadcast requires Julia 1.10; in previous releases, useRef(I).
Base.IteratorsMD.CartesianIndices —TypeCartesianIndices(sz::Dims) -> RCartesianIndices((istart:[istep:]istop, jstart:[jstep:]jstop, ...)) -> RDefine a regionR spanning a multidimensional rectangular range of integer indices. These are most commonly encountered in the context of iteration, wherefor I in R ... end will returnCartesianIndex indicesI equivalent to the nested loops
for j = jstart:jstep:jstop for i = istart:istep:istop ... endendConsequently these can be useful for writing algorithms that work in arbitrary dimensions.
CartesianIndices(A::AbstractArray) -> RAs a convenience, constructing aCartesianIndices from an array makes a range of its indices.
The step range methodCartesianIndices((istart:istep:istop, jstart:[jstep:]jstop, ...)) requires at least Julia 1.6.
Examples
julia> foreach(println, CartesianIndices((2, 2, 2)))CartesianIndex(1, 1, 1)CartesianIndex(2, 1, 1)CartesianIndex(1, 2, 1)CartesianIndex(2, 2, 1)CartesianIndex(1, 1, 2)CartesianIndex(2, 1, 2)CartesianIndex(1, 2, 2)CartesianIndex(2, 2, 2)julia> CartesianIndices(fill(1, (2,3)))CartesianIndices((2, 3))Conversion between linear and cartesian indices
Linear index to cartesian index conversion exploits the fact that aCartesianIndices is anAbstractArray and can be indexed linearly:
julia> cartesian = CartesianIndices((1:3, 1:2))CartesianIndices((1:3, 1:2))julia> cartesian[4]CartesianIndex(1, 2)julia> cartesian = CartesianIndices((1:2:5, 1:2))CartesianIndices((1:2:5, 1:2))julia> cartesian[2, 2]CartesianIndex(3, 2)Broadcasting
CartesianIndices support broadcasting arithmetic (+ and -) with aCartesianIndex.
julia> CIs = CartesianIndices((2:3, 5:6))CartesianIndices((2:3, 5:6))julia> CI = CartesianIndex(3, 4)CartesianIndex(3, 4)julia> CIs .+ CICartesianIndices((5:6, 9:10))For cartesian to linear index conversion, seeLinearIndices.
Base.Dims —TypeBase.LinearIndices —TypeLinearIndices(A::AbstractArray)Return aLinearIndices array with the same shape andaxes asA, holding the linear index of each entry inA. Indexing this array with cartesian indices allows mapping them to linear indices.
For arrays with conventional indexing (indices start at 1), or any multidimensional array, linear indices range from 1 tolength(A). However, forAbstractVectors linear indices areaxes(A, 1), and therefore do not start at 1 for vectors with unconventional indexing.
Calling this function is the "safe" way to write algorithms that exploit linear indexing.
Examples
julia> A = fill(1, (5,6,7));julia> b = LinearIndices(A);julia> extrema(b)(1, 210)LinearIndices(inds::CartesianIndices) -> RLinearIndices(sz::Dims) -> RLinearIndices((istart:istop, jstart:jstop, ...)) -> RReturn aLinearIndices array with the specified shape oraxes.
Examples
The main purpose of this constructor is intuitive conversion from cartesian to linear indexing:
julia> linear = LinearIndices((1:3, 1:2))3×2 LinearIndices{2, Tuple{UnitRange{Int64}, UnitRange{Int64}}}: 1 4 2 5 3 6julia> linear[1,2]4sourceBase.to_indices —Functionto_indices(A, I::Tuple)Convert the tupleI to a tuple of indices for use in indexing into arrayA.
The returned tuple must only contain eitherInts orAbstractArrays of scalar indices that are supported by arrayA. It will error upon encountering a novel index type that it does not know how to process.
For simple index types, it defers to the unexportedBase.to_index(A, i) to process each indexi. While this internal function is not intended to be called directly,Base.to_index may be extended by custom array or index types to provide custom indexing behaviors.
More complicated index types may require more context about the dimension into which they index. To support those cases,to_indices(A, I) callsto_indices(A, axes(A), I), which then recursively walks through both the given tuple of indices and the dimensional indices ofA in tandem. As such, not all index types are guaranteed to propagate toBase.to_index.
Examples
julia> A = zeros(1,2,3,4);julia> to_indices(A, (1,1,2,2))(1, 1, 2, 2)julia> to_indices(A, (1,1,2,20)) # no bounds checking(1, 1, 2, 20)julia> to_indices(A, (CartesianIndex((1,)), 2, CartesianIndex((3,4)))) # exotic index(1, 2, 3, 4)julia> to_indices(A, ([1,1], 1:2, 3, 4))([1, 1], 1:2, 3, 4)julia> to_indices(A, (1,2)) # no shape checking(1, 2)sourceBase.checkbounds —Functioncheckbounds(A, I...)Throw an error if the specified indicesI are not in bounds for the given arrayA.
checkbounds(Bool, A, I...)Returntrue if the specified indicesI are in bounds for the given arrayA. Subtypes ofAbstractArray should specialize this method if they need to provide custom bounds checking behaviors; however, in many cases one can rely onA's indices andcheckindex.
See alsocheckindex.
Examples
julia> A = rand(3, 3);julia> checkbounds(Bool, A, 2)truejulia> checkbounds(Bool, A, 3, 4)falsejulia> checkbounds(Bool, A, 1:3)truejulia> checkbounds(Bool, A, 1:3, 2:4)falsesourceBase.checkindex —Functioncheckindex(Bool, inds::AbstractUnitRange, index)Returntrue if the givenindex is within the bounds ofinds. Custom types that would like to behave as indices for all arrays can extend this method in order to provide a specialized bounds checking implementation.
See alsocheckbounds.
Examples
julia> checkindex(Bool, 1:20, 8)truejulia> checkindex(Bool, 1:20, 21)falsesourceBase.elsize —FunctionWhile most code can be written in an index-agnostic manner (see, e.g.,eachindex), it can sometimes be useful to explicitly check for offset axes:
Base.require_one_based_indexing —Functionrequire_one_based_indexing(A::AbstractArray)require_one_based_indexing(A,B...)Throw anArgumentError if the indices of any argument start with something other than1 along any axis. See alsohas_offset_axes.
Base.has_offset_axes —Functionhas_offset_axes(A)has_offset_axes(A, B, ...)Returntrue if the indices ofA start with something other than 1 along any axis. If multiple arguments are passed, equivalent tohas_offset_axes(A) || has_offset_axes(B) || ....
See alsorequire_one_based_indexing.
A “view” is a data structure that acts like an array (it is a subtype ofAbstractArray), but the underlying data is actually part of another array.
For example, ifx is an array andv = @view x[1:10], thenv acts like a 10-element array, but its data is actually accessing the first 10 elements ofx. Writing to a view, e.g.v[3] = 2, writes directly to the underlying arrayx (in this case modifyingx[3]).
Slicing operations likex[1:10] create a copy by default in Julia.@view x[1:10] changes it to make a view. The@views macro can be used on a whole block of code (e.g.@views function foo() .... end or@views begin ... end) to change all the slicing operations in that block to use views. Sometimes making a copy of the data is faster and sometimes using a view is faster, as described in theperformance tips.
Base.view —Functionview(A, inds...)Likegetindex, but returns a lightweight array that lazily references (or is effectively aview into) the parent arrayA at the given index or indicesinds instead of eagerly extracting elements or constructing a copied subset. Callinggetindex orsetindex! on the returned value (often aSubArray) computes the indices to access or modify the parent array on the fly. The behavior is undefined if the shape of the parent array is changed afterview is called because there is no bound check for the parent array; e.g., it may cause a segmentation fault.
Some immutable parent arrays (like ranges) may choose to simply recompute a new array in some circumstances instead of returning aSubArray if doing so is efficient and provides compatible semantics.
Examples
julia> A = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> b = view(A, :, 1)2-element view(::Matrix{Int64}, :, 1) with eltype Int64: 1 3julia> fill!(b, 0)2-element view(::Matrix{Int64}, :, 1) with eltype Int64: 0 0julia> A # Note A has changed even though we modified b2×2 Matrix{Int64}: 0 2 0 4julia> view(2:5, 2:3) # returns a range as type is immutable3:4sourceBase.@view —Macro@view A[inds...]Transform the indexing expressionA[inds...] into the equivalentview call.
This can only be applied directly to a single indexing expression and is particularly helpful for expressions that include the specialbegin orend indexing syntaxes likeA[begin, 2:end-1] (as those are not supported by the normalview function).
Note that@view cannot be used as the target of a regular assignment (e.g.,@view(A[1, 2:end]) = ...), nor would the un-decoratedindexed assignment (A[1, 2:end] = ...) or broadcasted indexed assignment (A[1, 2:end] .= ...) make a copy. It can be useful, however, forupdating broadcasted assignments like@view(A[1, 2:end]) .+= 1 because this is a simple syntax for@view(A[1, 2:end]) .= @view(A[1, 2:end]) + 1, and the indexing expression on the right-hand side would otherwise make a copy without the@view.
See also@views to switch an entire block of code to use views for non-scalar indexing.
Usingbegin in an indexing expression to refer to the first index requires at least Julia 1.5.
Examples
julia> A = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> b = @view A[:, 1]2-element view(::Matrix{Int64}, :, 1) with eltype Int64: 1 3julia> fill!(b, 0)2-element view(::Matrix{Int64}, :, 1) with eltype Int64: 0 0julia> A2×2 Matrix{Int64}: 0 2 0 4sourceBase.@views —Macro@views expressionConvert every array-slicing operation in the given expression (which may be abegin/end block, loop, function, etc.) to return a view. Scalar indices, non-array types, and explicitgetindex calls (as opposed toarray[...]) are unaffected.
Similarly,@views converts string slices intoSubString views.
The@views macro only affectsarray[...] expressions that appear explicitly in the givenexpression, not array slicing that occurs in functions called by that code.
Usingbegin in an indexing expression to refer to the first index was implemented in Julia 1.4, but was only supported by@views starting in Julia 1.5.
Examples
julia> A = zeros(3, 3);julia> @views for row in 1:3 b = A[row, :] # b is a view, not a copy b .= row # assign every element to the row index endjulia> A3×3 Matrix{Float64}: 1.0 1.0 1.0 2.0 2.0 2.0 3.0 3.0 3.0sourceBase.parent —Functionparent(A)Return the underlying parent object of the view. This parent of objects of typesSubArray,SubString,ReshapedArray orLinearAlgebra.Transpose is what was passed as an argument toview,reshape,transpose, etc. during object creation. If the input is not a wrapped object, return the input itself. If the input is wrapped multiple times, only the outermost wrapper will be removed.
Examples
julia> A = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> V = view(A, 1:2, :)2×2 view(::Matrix{Int64}, 1:2, :) with eltype Int64: 1 2 3 4julia> parent(V)2×2 Matrix{Int64}: 1 2 3 4sourceBase.parentindices —FunctionBase.selectdim —Functionselectdim(A, d::Integer, i)Return a view of all the data ofA where the index for dimensiond equalsi.
Equivalent toview(A,:,:,...,i,:,:,...) wherei is in positiond.
See also:eachslice.
Examples
julia> A = [1 2 3 4; 5 6 7 8]2×4 Matrix{Int64}: 1 2 3 4 5 6 7 8julia> selectdim(A, 2, 3)2-element view(::Matrix{Int64}, :, 3) with eltype Int64: 3 7julia> selectdim(A, 2, 3:4)2×2 view(::Matrix{Int64}, :, 3:4) with eltype Int64: 3 4 7 8sourceBase.reinterpret —Functionreinterpret(reshape, T, A::AbstractArray{S}) -> BChange the type-interpretation ofA while consuming or adding a "channel dimension."
Ifsizeof(T) = n*sizeof(S) forn>1,A's first dimension must be of sizen andB lacksA's first dimension. Conversely, ifsizeof(S) = n*sizeof(T) forn>1,B gets a new first dimension of sizen. The dimensionality is unchanged ifsizeof(T) == sizeof(S).
Examples
julia> A = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> reinterpret(reshape, Complex{Int}, A) # the result is a vector2-element reinterpret(reshape, Complex{Int64}, ::Matrix{Int64}) with eltype Complex{Int64}: 1 + 3im 2 + 4imjulia> a = [(1,2,3), (4,5,6)]2-element Vector{Tuple{Int64, Int64, Int64}}: (1, 2, 3) (4, 5, 6)julia> reinterpret(reshape, Int, a) # the result is a matrix3×2 reinterpret(reshape, Int64, ::Vector{Tuple{Int64, Int64, Int64}}) with eltype Int64: 1 4 2 5 3 6sourcereinterpret(T::DataType, A::AbstractArray)Construct a view of the array with the same binary data as the given array, but withT as element type.
This function also works on "lazy" array whose elements are not computed until they are explicitly retrieved. For instance,reinterpret on the range1:6 works similarly as on the dense vectorcollect(1:6):
julia> reinterpret(Float32, UInt32[1 2 3 4 5])1×5 reinterpret(Float32, ::Matrix{UInt32}): 1.0f-45 3.0f-45 4.0f-45 6.0f-45 7.0f-45julia> reinterpret(Complex{Int}, 1:6)3-element reinterpret(Complex{Int64}, ::UnitRange{Int64}): 1 + 2im 3 + 4im 5 + 6imIf the location of padding bits does not line up betweenT andeltype(A), the resulting array will be read-only or write-only, to prevent invalid bits from being written to or read from, respectively.
julia> a = reinterpret(Tuple{UInt8, UInt32}, UInt32[1, 2])1-element reinterpret(Tuple{UInt8, UInt32}, ::Vector{UInt32}): (0x01, 0x00000002)julia> a[1] = 3ERROR: Padding of type Tuple{UInt8, UInt32} is not compatible with type UInt32.julia> b = reinterpret(UInt32, Tuple{UInt8, UInt32}[(0x01, 0x00000002)]); # showing will errorjulia> b[1]ERROR: Padding of type UInt32 is not compatible with type Tuple{UInt8, UInt32}.sourcereinterpret(::Type{Out}, x::In)Change the type-interpretation of the binary data in the isbits valuex to that of the isbits typeOut. The size (ignoring padding) ofOut has to be the same as that of the type ofx. For example,reinterpret(Float32, UInt32(7)) interprets the 4 bytes corresponding toUInt32(7) as aFloat32. Note thatreinterpret(In, reinterpret(Out, x)) === x
julia> reinterpret(Float32, UInt32(7))1.0f-44julia> reinterpret(NTuple{2, UInt8}, 0x1234)(0x34, 0x12)julia> reinterpret(UInt16, (0x34, 0x12))0x1234julia> reinterpret(Tuple{UInt16, UInt8}, (0x01, 0x0203))(0x0301, 0x02)Use caution if some combinations of bits inOut are not considered valid and would otherwise be prevented by the type's constructors and methods. Unexpected behavior may result without additional validation.
Base.reshape —Functionreshape(A, dims...) -> AbstractArrayreshape(A, dims) -> AbstractArrayReturn an array with the same data asA, but with different dimension sizes or number of dimensions. The two arrays share the same underlying data, so that the result is mutable if and only ifA is mutable, and setting elements of one alters the values of the other.
The new dimensions may be specified either as a list of arguments or as a shape tuple. At most one dimension may be specified with a:, in which case its length is computed such that its product with all the specified dimensions is equal to the length of the original arrayA. The total number of elements must not change.
Examples
julia> A = Vector(1:16)16-element Vector{Int64}: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16julia> reshape(A, (4, 4))4×4 Matrix{Int64}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16julia> reshape(A, 2, :)2×8 Matrix{Int64}: 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 16julia> reshape(1:6, 2, 3)2×3 reshape(::UnitRange{Int64}, 2, 3) with eltype Int64: 1 3 5 2 4 6sourceBase.insertdims —Functioninsertdims(A; dims)Inverse ofdropdims; return an array with new singleton dimensions at every dimension indims.
Repeated dimensions are forbidden and the largest entry indims must be less than or equal thanndims(A) + length(dims).
The result shares the same underlying data asA, such that the result is mutable if and only ifA is mutable, and setting elements of one alters the values of the other.
See also:dropdims,reshape,vec.
Examples
julia> x = [1 2 3; 4 5 6]2×3 Matrix{Int64}: 1 2 3 4 5 6julia> insertdims(x, dims=3)2×3×1 Array{Int64, 3}:[:, :, 1] = 1 2 3 4 5 6julia> insertdims(x, dims=(1,2,5)) == reshape(x, 1, 1, 2, 3, 1)truejulia> dropdims(insertdims(x, dims=(1,2,5)), dims=(1,2,5))2×3 Matrix{Int64}: 1 2 3 4 5 6sourceBase.dropdims —Functiondropdims(A; dims)Return an array with the same data asA, but with the dimensions specified bydims removed.size(A,d) must equal 1 for everyd indims, and repeated dimensions or numbers outside1:ndims(A) are forbidden.
The result shares the same underlying data asA, such that the result is mutable if and only ifA is mutable, and setting elements of one alters the values of the other.
Examples
julia> a = reshape(Vector(1:4),(2,2,1,1))2×2×1×1 Array{Int64, 4}:[:, :, 1, 1] = 1 3 2 4julia> b = dropdims(a; dims=3)2×2×1 Array{Int64, 3}:[:, :, 1] = 1 3 2 4julia> b[1,1,1] = 5; a2×2×1×1 Array{Int64, 4}:[:, :, 1, 1] = 5 3 2 4sourceBase.vec —Functionvec(a::AbstractArray) -> AbstractVectorReshape the arraya as a one-dimensional column vector. Returna if it is already anAbstractVector. The resulting array shares the same underlying data asa, so it will only be mutable ifa is mutable, in which case modifying one will also modify the other.
Examples
julia> a = [1 2 3; 4 5 6]2×3 Matrix{Int64}: 1 2 3 4 5 6julia> vec(a)6-element Vector{Int64}: 1 4 2 5 3 6julia> vec(1:3)1:3sourceBase.SubArray —TypeBase.cat —Functioncat(A...; dims)Concatenate the input arrays along the dimensions specified indims.
Along a dimensiond in dims, the size of the output array issum(size(a,d) for a in A). Along other dimensions, all input arrays should have the same size, which will also be the size of the output array along those dimensions.
Ifdims is a single number, the different arrays are tightly packed along that dimension. Ifdims is an iterable containing several dimensions, the positions along these dimensions are increased simultaneously for each input array, filling with zero elsewhere. This allows one to construct block-diagonal matrices ascat(matrices...; dims=(1,2)), and their higher-dimensional analogues.
The special casedims=1 isvcat, anddims=2 ishcat. See alsohvcat,hvncat,stack,repeat.
The keyword also acceptsVal(dims).
Examples
Concatenate two arrays in different dimensions:
julia> a = [1 2 3]1×3 Matrix{Int64}: 1 2 3julia> b = [4 5 6]1×3 Matrix{Int64}: 4 5 6julia> cat(a, b; dims=1)2×3 Matrix{Int64}: 1 2 3 4 5 6julia> cat(a, b; dims=2)1×6 Matrix{Int64}: 1 2 3 4 5 6julia> cat(a, b; dims=(1, 2))2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6Extended Help
Concatenate 3D arrays:
julia> a = ones(2, 2, 3);julia> b = ones(2, 2, 4);julia> c = cat(a, b; dims=3);julia> size(c) == (2, 2, 7)trueConcatenate arrays of different sizes:
julia> cat([1 2; 3 4], [pi, pi], fill(10, 2,3,1); dims=2) # same as hcat2×6×1 Array{Float64, 3}:[:, :, 1] = 1.0 2.0 3.14159 10.0 10.0 10.0 3.0 4.0 3.14159 10.0 10.0 10.0Construct a block diagonal matrix:
julia> cat(true, trues(2,2), trues(4)', dims=(1,2)) # block-diagonal4×7 Matrix{Bool}: 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1julia> cat(1, [2], [3;;]; dims=Val(2))1×3 Matrix{Int64}: 1 2 3julia> a = "aaa";julia> b = "bbb";julia> cat(a, b; dims=1)2-element Vector{String}: "aaa" "bbb"julia> cat(a, b; dims=2)1×2 Matrix{String}: "aaa" "bbb"julia> a * b"aaabbb"sourceBase.vcat —Functionvcat(A...)Concatenate arrays or numbers vertically. Equivalent tocat(A...; dims=1), and to the syntax[a; b; c].
To concatenate a large vector of arrays,reduce(vcat, A) calls an efficient method whenA isa AbstractVector{<:AbstractVecOrMat}, rather than working pairwise.
See alsohcat,Iterators.flatten,stack.
Examples
julia> v = vcat([1,2], [3,4])4-element Vector{Int64}: 1 2 3 4julia> v == vcat(1, 2, [3,4]) # accepts numberstruejulia> v == [1; 2; [3,4]] # syntax for the same operationtruejulia> summary(ComplexF64[1; 2; [3,4]]) # syntax for supplying the element type"4-element Vector{ComplexF64}"julia> vcat(range(1, 2, length=3)) # collects lazy ranges3-element Vector{Float64}: 1.0 1.5 2.0julia> two = ([10, 20, 30]', Float64[4 5 6; 7 8 9]) # row vector and a matrix(adjoint([10, 20, 30]), [4.0 5.0 6.0; 7.0 8.0 9.0])julia> vcat(two...)3×3 Matrix{Float64}: 10.0 20.0 30.0 4.0 5.0 6.0 7.0 8.0 9.0julia> vs = [[1, 2], [3, 4], [5, 6]];julia> reduce(vcat, vs) # more efficient than vcat(vs...)6-element Vector{Int64}: 1 2 3 4 5 6julia> ans == collect(Iterators.flatten(vs))truesourceBase.hcat —Functionhcat(A...)Concatenate arrays or numbers horizontally. Equivalent tocat(A...; dims=2), and to the syntax[a b c] or[a;; b;; c].
For a large vector of arrays,reduce(hcat, A) calls an efficient method whenA isa AbstractVector{<:AbstractVecOrMat}. For a vector of vectors, this can also be writtenstack(A).
Examples
julia> hcat([1,2], [3,4], [5,6])2×3 Matrix{Int64}: 1 3 5 2 4 6julia> hcat(1, 2, [30 40], [5, 6, 7]') # accepts numbers1×7 Matrix{Int64}: 1 2 30 40 5 6 7julia> ans == [1 2 [30 40] [5, 6, 7]'] # syntax for the same operationtruejulia> Float32[1 2 [30 40] [5, 6, 7]'] # syntax for supplying the eltype1×7 Matrix{Float32}: 1.0 2.0 30.0 40.0 5.0 6.0 7.0julia> ms = [zeros(2,2), [1 2; 3 4], [50 60; 70 80]];julia> reduce(hcat, ms) # more efficient than hcat(ms...)2×6 Matrix{Float64}: 0.0 0.0 1.0 2.0 50.0 60.0 0.0 0.0 3.0 4.0 70.0 80.0julia> stack(ms) |> summary # disagrees on a vector of matrices"2×2×3 Array{Float64, 3}"julia> hcat(Int[], Int[], Int[]) # empty vectors, each of size (0,)0×3 Matrix{Int64}julia> hcat([1.1, 9.9], Matrix(undef, 2, 0)) # hcat with empty 2×0 Matrix2×1 Matrix{Any}: 1.1 9.9sourceBase.hvcat —Functionhvcat(blocks_per_row::Union{Tuple{Vararg{Int}}, Int}, values...)Horizontal and vertical concatenation in one call. This function is called for block matrix syntax. The first argument specifies the number of arguments to concatenate in each block row. If the first argument is a single integern, then all block rows are assumed to haven block columns.
Examples
julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6(1, 2, 3, 4, 5, 6)julia> [a b c; d e f]2×3 Matrix{Int64}: 1 2 3 4 5 6julia> hvcat((3,3), a,b,c,d,e,f)2×3 Matrix{Int64}: 1 2 3 4 5 6julia> [a b; c d; e f]3×2 Matrix{Int64}: 1 2 3 4 5 6julia> hvcat((2,2,2), a,b,c,d,e,f)3×2 Matrix{Int64}: 1 2 3 4 5 6julia> hvcat((2,2,2), a,b,c,d,e,f) == hvcat(2, a,b,c,d,e,f)truesourceBase.hvncat —Functionhvncat(dim::Int, row_first, values...)hvncat(dims::Tuple{Vararg{Int}}, row_first, values...)hvncat(shape::Tuple{Vararg{Tuple}}, row_first, values...)Horizontal, vertical, and n-dimensional concatenation of manyvalues in one call.
This function is called for block matrix syntax. The first argument either specifies the shape of the concatenation, similar tohvcat, as a tuple of tuples, or the dimensions that specify the key number of elements along each axis, and is used to determine the output dimensions. Thedims form is more performant, and is used by default when the concatenation operation has the same number of elements along each axis (e.g., [a b; c d;;; e f ; g h]). Theshape form is used when the number of elements along each axis is unbalanced (e.g., [a b ; c]). Unbalanced syntax needs additional validation overhead. Thedim form is an optimization for concatenation along just one dimension.row_first indicates howvalues are ordered. The meaning of the first and second elements ofshape are also swapped based onrow_first.
Examples
julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6(1, 2, 3, 4, 5, 6)julia> [a b c;;; d e f]1×3×2 Array{Int64, 3}:[:, :, 1] = 1 2 3[:, :, 2] = 4 5 6julia> hvncat((2,1,3), false, a,b,c,d,e,f)2×1×3 Array{Int64, 3}:[:, :, 1] = 1 2[:, :, 2] = 3 4[:, :, 3] = 5 6julia> [a b;;; c d;;; e f]1×2×3 Array{Int64, 3}:[:, :, 1] = 1 2[:, :, 2] = 3 4[:, :, 3] = 5 6julia> hvncat(((3, 3), (3, 3), (6,)), true, a, b, c, d, e, f)1×3×2 Array{Int64, 3}:[:, :, 1] = 1 2 3[:, :, 2] = 4 5 6Examples for construction of the arguments
[a b c ; d e f ;;; g h i ; j k l ;;; m n o ; p q r ;;; s t u ; v w x]⇒ dims = (2, 3, 4)[a b ; c ;;; d ;;;;] ___ _ _ 2 1 1 = elements in each row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________ 4 = elements in each 4d slice (4,)⇒ shape = ((2, 1, 1), (3, 1), (4,), (4,)) with `row_first` = truesourceBase.stack —Functionstack(f, args...; [dims])Apply a function to each element of a collection, andstack the result. Or to several collections,zipped together.
The function should return arrays (or tuples, or other iterators) all of the same size. These become slices of the result, each separated alongdims (if given) or by default along the last dimensions.
Examples
julia> stack(c -> (c, c-32), "julia")2×5 Matrix{Char}: 'j' 'u' 'l' 'i' 'a' 'J' 'U' 'L' 'I' 'A'julia> stack(eachrow([1 2 3; 4 5 6]), (10, 100); dims=1) do row, n vcat(row, row .* n, row ./ n) end2×9 Matrix{Float64}: 1.0 2.0 3.0 10.0 20.0 30.0 0.1 0.2 0.3 4.0 5.0 6.0 400.0 500.0 600.0 0.04 0.05 0.06sourcestack(iter; [dims])Combine a collection of arrays (or other iterable objects) of equal size into one larger array, by arranging them along one or more new dimensions.
By default the axes of the elements are placed first, givingsize(result) = (size(first(iter))..., size(iter)...). This has the same order of elements asIterators.flatten(iter).
With keyworddims::Integer, instead theith element ofiter becomes the sliceselectdim(result, dims, i), so thatsize(result, dims) == length(iter). In this casestack reverses the action ofeachslice with the samedims.
The variouscat functions also combine arrays. However, these all extend the arrays' existing (possibly trivial) dimensions, rather than placing the arrays along new dimensions. They also accept arrays as separate arguments, rather than a single collection.
Examples
julia> vecs = (1:2, [30, 40], Float32[500, 600]);julia> mat = stack(vecs)2×3 Matrix{Float32}: 1.0 30.0 500.0 2.0 40.0 600.0julia> mat == hcat(vecs...) == reduce(hcat, collect(vecs))truejulia> vec(mat) == vcat(vecs...) == reduce(vcat, collect(vecs))truejulia> stack(zip(1:4, 10:99)) # accepts any iterators of iterators2×4 Matrix{Int64}: 1 2 3 4 10 11 12 13julia> vec(ans) == collect(Iterators.flatten(zip(1:4, 10:99)))truejulia> stack(vecs; dims=1) # unlike any cat function, 1st axis of vecs[1] is 2nd axis of result3×2 Matrix{Float32}: 1.0 2.0 30.0 40.0 500.0 600.0julia> x = rand(3,4);julia> x == stack(eachcol(x)) == stack(eachrow(x), dims=1) # inverse of eachslicetrueHigher-dimensional examples:
julia> A = rand(5, 7, 11);julia> E = eachslice(A, dims=2); # a vector of matricesjulia> (element = size(first(E)), container = size(E))(element = (5, 11), container = (7,))julia> stack(E) |> size(5, 11, 7)julia> stack(E) == stack(E; dims=3) == cat(E...; dims=3)truejulia> A == stack(E; dims=2)truejulia> M = (fill(10i+j, 2, 3) for i in 1:5, j in 1:7);julia> (element = size(first(M)), container = size(M))(element = (2, 3), container = (5, 7))julia> stack(M) |> size # keeps all dimensions(2, 3, 5, 7)julia> stack(M; dims=1) |> size # vec(container) along dims=1(35, 2, 3)julia> hvcat(5, M...) |> size # hvcat puts matrices next to each other(14, 15)sourceBase.circshift —Functioncircshift(A, shifts)Circularly shift, i.e. rotate, the data inA. The second argument is a tuple or vector giving the amount to shift in each dimension, or an integer to shift only in the first dimension.
The generated code is most efficient when the shift amounts are known at compile-time, i.e., compile-time constants.
See also:circshift!,circcopy!,bitrotate,<<.
Examples
julia> b = reshape(Vector(1:16), (4,4))4×4 Matrix{Int64}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16julia> circshift(b, (0,2))4×4 Matrix{Int64}: 9 13 1 5 10 14 2 6 11 15 3 7 12 16 4 8julia> circshift(b, (-1,0))4×4 Matrix{Int64}: 2 6 10 14 3 7 11 15 4 8 12 16 1 5 9 13julia> a = BitArray([true, true, false, false, true])5-element BitVector: 1 1 0 0 1julia> circshift(a, 1)5-element BitVector: 1 1 1 0 0julia> circshift(a, -1)5-element BitVector: 1 0 0 1 1julia> x = (1, 2, 3, 4, 5)(1, 2, 3, 4, 5)julia> circshift(x, 4)(2, 3, 4, 5, 1)julia> z = (1, 'a', -7.0, 3)(1, 'a', -7.0, 3)julia> circshift(z, -1)('a', -7.0, 3, 1)sourceBase.circshift! —Functioncircshift!(dest, src, shifts)Circularly shift, i.e. rotate, the data insrc, storing the result indest.shifts specifies the amount to shift in each dimension.
See alsocircshift.
circshift!(a::AbstractVector, shift::Integer)Circularly shift, or rotate, the data in vectora byshift positions.
Examples
julia> circshift!([1, 2, 3, 4, 5], 2)5-element Vector{Int64}: 4 5 1 2 3julia> circshift!([1, 2, 3, 4, 5], -2)5-element Vector{Int64}: 3 4 5 1 2sourceBase.circcopy! —Functioncirccopy!(dest, src)Copysrc todest, indexing each dimension modulo its length.src anddest must have the same size, but can be offset in their indices; any offset results in a (circular) wraparound. If the arrays have overlapping indices, then on the domain of the overlapdest agrees withsrc.
See also:circshift.
Examples
julia> src = reshape(Vector(1:16), (4,4))4×4 Matrix{Int64}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16julia> dest = OffsetArray{Int}(undef, (0:3,2:5));julia> circcopy!(dest, src)4×4 OffsetArray(::Matrix{Int64}, 0:3, 2:5) with eltype Int64 with indices 0:3×2:5: 8 12 16 4 5 9 13 1 6 10 14 2 7 11 15 3julia> dest[1:3,2:4] == src[1:3,2:4]truesourceBase.findall —Methodfindall(A)Return a vectorI of thetrue indices or keys ofA. If there are no such elements ofA, return an empty array. To search for other kinds of values, pass a predicate as the first argument.
Indices or keys are of the same type as those returned bykeys(A) andpairs(A).
See also:findfirst,searchsorted.
Examples
julia> A = [true, false, false, true]4-element Vector{Bool}: 1 0 0 1julia> findall(A)2-element Vector{Int64}: 1 4julia> A = [true false; false true]2×2 Matrix{Bool}: 1 0 0 1julia> findall(A)2-element Vector{CartesianIndex{2}}: CartesianIndex(1, 1) CartesianIndex(2, 2)julia> findall(falses(3))Int64[]sourceBase.findall —Methodfindall(f::Function, A)Return a vectorI of the indices or keys ofA wheref(A[I]) returnstrue. If there are no such elements ofA, return an empty array.
Indices or keys are of the same type as those returned bykeys(A) andpairs(A).
Examples
julia> x = [1, 3, 4]3-element Vector{Int64}: 1 3 4julia> findall(isodd, x)2-element Vector{Int64}: 1 2julia> A = [1 2 0; 3 4 0]2×3 Matrix{Int64}: 1 2 0 3 4 0julia> findall(isodd, A)2-element Vector{CartesianIndex{2}}: CartesianIndex(1, 1) CartesianIndex(2, 1)julia> findall(!iszero, A)4-element Vector{CartesianIndex{2}}: CartesianIndex(1, 1) CartesianIndex(2, 1) CartesianIndex(1, 2) CartesianIndex(2, 2)julia> d = Dict(:A => 10, :B => -1, :C => 0)Dict{Symbol, Int64} with 3 entries: :A => 10 :B => -1 :C => 0julia> findall(≥(0), d)2-element Vector{Symbol}: :A :CsourceBase.findfirst —Methodfindfirst(A)Return the index or key of the firsttrue value inA. Returnnothing if no such value is found. To search for other kinds of values, pass a predicate as the first argument.
Indices or keys are of the same type as those returned bykeys(A) andpairs(A).
See also:findall,findnext,findlast,searchsortedfirst.
Examples
julia> A = [false, false, true, false]4-element Vector{Bool}: 0 0 1 0julia> findfirst(A)3julia> findfirst(falses(3)) # returns nothing, but not printed in the REPLjulia> A = [false false; true false]2×2 Matrix{Bool}: 0 0 1 0julia> findfirst(A)CartesianIndex(2, 1)sourceBase.findfirst —Methodfindfirst(predicate::Function, A)Return the index or key of the first element ofA for whichpredicate returnstrue. Returnnothing if there is no such element.
Indices or keys are of the same type as those returned bykeys(A) andpairs(A).
Examples
julia> A = [1, 4, 2, 2]4-element Vector{Int64}: 1 4 2 2julia> findfirst(iseven, A)2julia> findfirst(x -> x>10, A) # returns nothing, but not printed in the REPLjulia> findfirst(isequal(4), A)2julia> A = [1 4; 2 2]2×2 Matrix{Int64}: 1 4 2 2julia> findfirst(iseven, A)CartesianIndex(2, 1)sourceBase.findlast —Methodfindlast(A)Return the index or key of the lasttrue value inA. Returnnothing if there is notrue value inA.
Indices or keys are of the same type as those returned bykeys(A) andpairs(A).
See also:findfirst,findprev,findall.
Examples
julia> A = [true, false, true, false]4-element Vector{Bool}: 1 0 1 0julia> findlast(A)3julia> A = falses(2,2);julia> findlast(A) # returns nothing, but not printed in the REPLjulia> A = [true false; true false]2×2 Matrix{Bool}: 1 0 1 0julia> findlast(A)CartesianIndex(2, 1)sourceBase.findlast —Methodfindlast(predicate::Function, A)Return the index or key of the last element ofA for whichpredicate returnstrue. Returnnothing if there is no such element.
Indices or keys are of the same type as those returned bykeys(A) andpairs(A).
Examples
julia> A = [1, 2, 3, 4]4-element Vector{Int64}: 1 2 3 4julia> findlast(isodd, A)3julia> findlast(x -> x > 5, A) # returns nothing, but not printed in the REPLjulia> A = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> findlast(isodd, A)CartesianIndex(2, 1)sourceBase.findnext —Methodfindnext(A, i)Find the next index after or includingi of atrue element ofA, ornothing if not found.
Indices are of the same type as those returned bykeys(A) andpairs(A).
Examples
julia> A = [false, false, true, false]4-element Vector{Bool}: 0 0 1 0julia> findnext(A, 1)3julia> findnext(A, 4) # returns nothing, but not printed in the REPLjulia> A = [false false; true false]2×2 Matrix{Bool}: 0 0 1 0julia> findnext(A, CartesianIndex(1, 1))CartesianIndex(2, 1)sourceBase.findnext —Methodfindnext(predicate::Function, A, i)Find the next index after or includingi of an element ofA for whichpredicate returnstrue, ornothing if not found. This works for Arrays, Strings, and most other collections that supportgetindex,keys(A), andnextind.
Indices are of the same type as those returned bykeys(A) andpairs(A).
Examples
julia> A = [1, 4, 2, 2];julia> findnext(isodd, A, 1)1julia> findnext(isodd, A, 2) # returns nothing, but not printed in the REPLjulia> A = [1 4; 2 2];julia> findnext(isodd, A, CartesianIndex(1, 1))CartesianIndex(1, 1)julia> findnext(isspace, "a b c", 3)4sourceBase.findprev —Methodfindprev(A, i)Find the previous index before or includingi of atrue element ofA, ornothing if not found.
Indices are of the same type as those returned bykeys(A) andpairs(A).
See also:findnext,findfirst,findall.
Examples
julia> A = [false, false, true, true]4-element Vector{Bool}: 0 0 1 1julia> findprev(A, 3)3julia> findprev(A, 1) # returns nothing, but not printed in the REPLjulia> A = [false false; true true]2×2 Matrix{Bool}: 0 0 1 1julia> findprev(A, CartesianIndex(2, 1))CartesianIndex(2, 1)sourceBase.findprev —Methodfindprev(predicate::Function, A, i)Find the previous index before or includingi of an element ofA for whichpredicate returnstrue, ornothing if not found. This works for Arrays, Strings, and most other collections that supportgetindex,keys(A), andnextind.
Indices are of the same type as those returned bykeys(A) andpairs(A).
Examples
julia> A = [4, 6, 1, 2]4-element Vector{Int64}: 4 6 1 2julia> findprev(isodd, A, 1) # returns nothing, but not printed in the REPLjulia> findprev(isodd, A, 3)3julia> A = [4 6; 1 2]2×2 Matrix{Int64}: 4 6 1 2julia> findprev(isodd, A, CartesianIndex(1, 2))CartesianIndex(2, 1)julia> findprev(isspace, "a b c", 3)2sourceBase.permutedims —Functionpermutedims(v::AbstractVector)Reshape vectorv into a1 × length(v) row matrix. Differs fromtranspose in that the operation is not recursive, which is especially useful for arrays of non-numeric values (where the recursivetranspose might throw an error).
Examples
Unliketranspose,permutedims can be used on vectors of arbitrary non-numeric elements, such as strings:
julia> permutedims(["a", "b", "c"])1×3 Matrix{String}: "a" "b" "c"For vectors of numbers,permutedims(v) works much liketranspose(v) except that the return type differs (it usesreshape rather than aLinearAlgebra.Transpose view, though both share memory with the original arrayv):
julia> v = [1, 2, 3, 4]4-element Vector{Int64}: 1 2 3 4julia> p = permutedims(v)1×4 Matrix{Int64}: 1 2 3 4julia> r = transpose(v)1×4 transpose(::Vector{Int64}) with eltype Int64: 1 2 3 4julia> p == rtruejulia> typeof(r)Transpose{Int64, Vector{Int64}}julia> p[1] = 5; r[2] = 6; # mutating p or r also changes vjulia> v # shares memory with both p and r4-element Vector{Int64}: 5 6 3 4However,permutedims produces results that differ fromtranspose for vectors whose elements are themselves numeric matrices:
julia> V = [[[1 2; 3 4]]; [[5 6; 7 8]]]2-element Vector{Matrix{Int64}}: [1 2; 3 4] [5 6; 7 8]julia> permutedims(V)1×2 Matrix{Matrix{Int64}}: [1 2; 3 4] [5 6; 7 8]julia> transpose(V)1×2 transpose(::Vector{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}: [1 3; 2 4] [5 7; 6 8]sourcepermutedims(A::AbstractArray, perm)permutedims(A::AbstractMatrix)Permute the dimensions (axes) of arrayA.perm is a tuple or vector ofndims(A) integers specifying the permutation.
IfA is a 2d array (AbstractMatrix), thenperm defaults to(2,1), swapping the two axes ofA (the rows and columns of the matrix). This differs fromtranspose in that the operation is not recursive, which is especially useful for arrays of non-numeric values (where the recursivetranspose would throw an error) and/or 2d arrays that do not represent linear operators.
For 1d arrays, seepermutedims(v::AbstractVector), which returns a 1-row “matrix”.
See alsopermutedims!,PermutedDimsArray,transpose,invperm.
Examples
2d arrays:
Unliketranspose,permutedims can be used to swap rows and columns of 2d arrays of arbitrary non-numeric elements, such as strings:
julia> A = ["a" "b" "c" "d" "e" "f"]2×3 Matrix{String}: "a" "b" "c" "d" "e" "f"julia> permutedims(A)3×2 Matrix{String}: "a" "d" "b" "e" "c" "f"Andpermutedims produces results that differ fromtranspose for matrices whose elements are themselves numeric matrices:
julia> a = [1 2; 3 4];julia> b = [5 6; 7 8];julia> c = [9 10; 11 12];julia> d = [13 14; 15 16];julia> X = [[a] [b]; [c] [d]]2×2 Matrix{Matrix{Int64}}: [1 2; 3 4] [5 6; 7 8] [9 10; 11 12] [13 14; 15 16]julia> permutedims(X)2×2 Matrix{Matrix{Int64}}: [1 2; 3 4] [9 10; 11 12] [5 6; 7 8] [13 14; 15 16]julia> transpose(X)2×2 transpose(::Matrix{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}: [1 3; 2 4] [9 11; 10 12] [5 7; 6 8] [13 15; 14 16]Multi-dimensional arrays
julia> A = reshape(Vector(1:8), (2,2,2))2×2×2 Array{Int64, 3}:[:, :, 1] = 1 3 2 4[:, :, 2] = 5 7 6 8julia> perm = (3, 1, 2); # put the last dimension firstjulia> B = permutedims(A, perm)2×2×2 Array{Int64, 3}:[:, :, 1] = 1 2 5 6[:, :, 2] = 3 4 7 8julia> A == permutedims(B, invperm(perm)) # the inverse permutationtrueFor each dimensioni ofB = permutedims(A, perm), its corresponding dimension ofA will beperm[i]. This means the equalitysize(B, i) == size(A, perm[i]) holds.
julia> A = randn(5, 7, 11, 13);julia> perm = [4, 1, 3, 2];julia> B = permutedims(A, perm);julia> size(B)(13, 5, 11, 7)julia> size(A)[perm] == anstruesourceBase.permutedims! —Functionpermutedims!(dest, src, perm)Permute the dimensions of arraysrc and store the result in the arraydest.perm is a vector specifying a permutation of lengthndims(src). The preallocated arraydest should havesize(dest) == size(src)[perm] and is completely overwritten. No in-place permutation is supported and unexpected results will happen ifsrc anddest have overlapping memory regions.
See alsopermutedims.
Base.PermutedDimsArrays.PermutedDimsArray —TypePermutedDimsArray(A, perm) -> BGiven an AbstractArrayA, create a viewB such that the dimensions appear to be permuted. Similar topermutedims, except that no copying occurs (B shares storage withA).
See alsopermutedims,invperm.
Examples
julia> A = rand(3,5,4);julia> B = PermutedDimsArray(A, (3,1,2));julia> size(B)(4, 3, 5)julia> B[3,1,2] == A[1,2,3]truesourceBase.promote_shape —Functionpromote_shape(s1, s2)Check two array shapes for compatibility, allowing trailing singleton dimensions, and return whichever shape has more dimensions.
Examples
julia> a = fill(1, (3,4,1,1,1));julia> b = fill(1, (3,4));julia> promote_shape(a,b)(Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1))julia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1))(2, 3, 1, 4, 1)sourceBase.accumulate —Functionaccumulate(op, A; dims::Integer, [init])Cumulative operationop along the dimensiondims ofA (providingdims is optional for vectors). An initial valueinit may optionally be provided by a keyword argument. See alsoaccumulate! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
For common operations there are specialized variants ofaccumulate, seecumsum,cumprod. For a lazy version, seeIterators.accumulate.
Examples
julia> accumulate(+, [1,2,3])3-element Vector{Int64}: 1 3 6julia> accumulate(min, (1, -2, 3, -4, 5), init=0)(0, -2, -2, -4, -4)julia> accumulate(/, (2, 4, Inf), init=100)(50.0, 12.5, 0.0)julia> accumulate(=>, i^2 for i in 1:3)3-element Vector{Any}: 1 1 => 4 (1 => 4) => 9julia> accumulate(+, fill(1, 3, 4))3×4 Matrix{Int64}: 1 4 7 10 2 5 8 11 3 6 9 12julia> accumulate(+, fill(1, 2, 5), dims=2, init=100.0)2×5 Matrix{Float64}: 101.0 102.0 103.0 104.0 105.0 101.0 102.0 103.0 104.0 105.0sourceBase.accumulate! —Functionaccumulate!(op, B, A; [dims], [init])Cumulative operationop onA along the dimensiondims, storing the result inB. Providingdims is optional for vectors. If the keyword argumentinit is given, its value is used to instantiate the accumulation.
See alsoaccumulate,cumsum!,cumprod!.
Examples
julia> x = [1, 0, 2, 0, 3];julia> y = rand(5);julia> accumulate!(+, y, x);julia> y5-element Vector{Float64}: 1.0 1.0 3.0 3.0 6.0julia> A = [1 2 3; 4 5 6];julia> B = similar(A);julia> accumulate!(-, B, A, dims=1)2×3 Matrix{Int64}: 1 2 3 -3 -3 -3julia> accumulate!(*, B, A, dims=2, init=10)2×3 Matrix{Int64}: 10 20 60 40 200 1200sourceBase.cumprod —Functioncumprod(itr)Cumulative product of an iterator.
See alsocumprod!,accumulate,cumsum.
Examples
julia> cumprod(fill(1//2, 3))3-element Vector{Rational{Int64}}: 1//2 1//4 1//8julia> cumprod((1, 2, 1, 3, 1))(1, 2, 2, 6, 6)julia> cumprod("julia")5-element Vector{String}: "j" "ju" "jul" "juli" "julia"sourcecumprod(A; dims::Integer)Cumulative product along the dimensiondim. See alsocumprod! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
Examples
julia> a = Int8[1 2 3; 4 5 6];julia> cumprod(a, dims=1)2×3 Matrix{Int64}: 1 2 3 4 10 18julia> cumprod(a, dims=2)2×3 Matrix{Int64}: 1 2 6 4 20 120sourceBase.cumprod! —FunctionBase.cumsum —Functioncumsum(itr)Cumulative sum of an iterator.
See alsoaccumulate to apply functions other than+.
Examples
julia> cumsum(1:3)3-element Vector{Int64}: 1 3 6julia> cumsum((true, false, true, false, true))(1, 1, 2, 2, 3)julia> cumsum(fill(1, 2) for i in 1:3)3-element Vector{Vector{Int64}}: [1, 1] [2, 2] [3, 3]sourcecumsum(A; dims::Integer)Cumulative sum along the dimensiondims. See alsocumsum! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
Examples
julia> a = [1 2 3; 4 5 6]2×3 Matrix{Int64}: 1 2 3 4 5 6julia> cumsum(a, dims=1)2×3 Matrix{Int64}: 1 2 3 5 7 9julia> cumsum(a, dims=2)2×3 Matrix{Int64}: 1 3 6 4 9 15The return array'seltype isInt for signed integers of less than system word size andUInt for unsigned integers of less than system word size. To preserveeltype of arrays with small signed or unsigned integeraccumulate(+, A) should be used.
julia> cumsum(Int8[100, 28])2-element Vector{Int64}: 100 128julia> accumulate(+,Int8[100, 28])2-element Vector{Int8}: 100 -128In the former case, the integers are widened to system word size and therefore the result isInt64[100, 128]. In the latter case, no such widening happens and integer overflow results inInt8[100, -128].
Base.cumsum! —FunctionBase.diff —Functiondiff(A::AbstractVector)diff(A::AbstractArray; dims::Integer)Finite difference operator on a vector or a multidimensional arrayA. In the latter case the dimension to operate on needs to be specified with thedims keyword argument.
Examples
julia> a = [2 4; 6 16]2×2 Matrix{Int64}: 2 4 6 16julia> diff(a, dims=2)2×1 Matrix{Int64}: 2 10julia> diff(vec(a))3-element Vector{Int64}: 4 -2 12sourceBase.repeat —Functionrepeat(c::AbstractChar, r::Integer) -> StringRepeat a characterr times. This can equivalently be accomplished by callingc^r.
Examples
julia> repeat('A', 3)"AAA"sourcerepeat(s::AbstractString, r::Integer)Repeat a stringr times. This can be written ass^r.
See also^.
Examples
julia> repeat("ha", 3)"hahaha"sourcerepeat(A::AbstractArray; inner=ntuple(Returns(1), ndims(A)), outer=ntuple(Returns(1), ndims(A)))Construct an array by repeating the entries ofA. The i-th element ofinner specifies the number of times that the individual entries of the i-th dimension ofA should be repeated. The i-th element ofouter specifies the number of times that a slice along the i-th dimension ofA should be repeated. Ifinner orouter are omitted, no repetition is performed.
Examples
julia> repeat(1:2, inner=2)4-element Vector{Int64}: 1 1 2 2julia> repeat(1:2, outer=2)4-element Vector{Int64}: 1 2 1 2julia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))4×6 Matrix{Int64}: 1 2 1 2 1 2 1 2 1 2 1 2 3 4 3 4 3 4 3 4 3 4 3 4sourcerepeat(A::AbstractArray, counts::Integer...)Construct an array by repeating arrayA a given number of times in each dimension, specified bycounts.
See also:fill,Iterators.repeated,Iterators.cycle.
Examples
julia> repeat([1, 2, 3], 2)6-element Vector{Int64}: 1 2 3 1 2 3julia> repeat([1, 2, 3], 2, 3)6×3 Matrix{Int64}: 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3sourceBase.rot180 —Functionrot180(A, k)Rotate matrixA 180 degrees an integerk number of times. Ifk is even, this is equivalent to acopy.
Examples
julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> rot180(a,1)2×2 Matrix{Int64}: 4 3 2 1julia> rot180(a,2)2×2 Matrix{Int64}: 1 2 3 4sourcerot180(A)Rotate matrixA 180 degrees.
Examples
julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> rot180(a)2×2 Matrix{Int64}: 4 3 2 1sourceBase.rotl90 —Functionrotl90(A, k)Left-rotate matrixA 90 degrees counterclockwise an integerk number of times. Ifk is a multiple of four (including zero), this is equivalent to acopy.
Examples
julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> rotl90(a,1)2×2 Matrix{Int64}: 2 4 1 3julia> rotl90(a,2)2×2 Matrix{Int64}: 4 3 2 1julia> rotl90(a,3)2×2 Matrix{Int64}: 3 1 4 2julia> rotl90(a,4)2×2 Matrix{Int64}: 1 2 3 4sourcerotl90(A)Rotate matrixA left 90 degrees.
Examples
julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> rotl90(a)2×2 Matrix{Int64}: 2 4 1 3sourceBase.rotr90 —Functionrotr90(A, k)Right-rotate matrixA 90 degrees clockwise an integerk number of times. Ifk is a multiple of four (including zero), this is equivalent to acopy.
Examples
julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> rotr90(a,1)2×2 Matrix{Int64}: 3 1 4 2julia> rotr90(a,2)2×2 Matrix{Int64}: 4 3 2 1julia> rotr90(a,3)2×2 Matrix{Int64}: 2 4 1 3julia> rotr90(a,4)2×2 Matrix{Int64}: 1 2 3 4sourcerotr90(A)Rotate matrixA right 90 degrees.
Examples
julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> rotr90(a)2×2 Matrix{Int64}: 3 1 4 2sourceBase.mapslices —Functionmapslices(f, A; dims)Transform the given dimensions of arrayA by applying a functionf on each slice of the formA[..., :, ..., :, ...], with a colon at eachd indims. The results are concatenated along the remaining dimensions.
For example, ifdims = [1,2] andA is 4-dimensional, thenf is called onx = A[:,:,i,j] for alli andj, andf(x) becomesR[:,:,i,j] in the resultR.
See alsoeachcol oreachslice, used withmap orstack.
Examples
julia> A = reshape(1:30,(2,5,3))2×5×3 reshape(::UnitRange{Int64}, 2, 5, 3) with eltype Int64:[:, :, 1] = 1 3 5 7 9 2 4 6 8 10[:, :, 2] = 11 13 15 17 19 12 14 16 18 20[:, :, 3] = 21 23 25 27 29 22 24 26 28 30julia> f(x::Matrix) = fill(x[1,1], 1,4); # returns a 1×4 matrixjulia> B = mapslices(f, A, dims=(1,2))1×4×3 Array{Int64, 3}:[:, :, 1] = 1 1 1 1[:, :, 2] = 11 11 11 11[:, :, 3] = 21 21 21 21julia> f2(x::AbstractMatrix) = fill(x[1,1], 1,4);julia> B == stack(f2, eachslice(A, dims=3))truejulia> g(x) = x[begin] // x[end-1]; # returns a numberjulia> mapslices(g, A, dims=[1,3])1×5×1 Array{Rational{Int64}, 3}:[:, :, 1] = 1//21 3//23 1//5 7//27 9//29julia> map(g, eachslice(A, dims=2))5-element Vector{Rational{Int64}}: 1//21 3//23 1//5 7//27 9//29julia> mapslices(sum, A; dims=(1,3)) == sum(A; dims=(1,3))trueNotice that ineachslice(A; dims=2), the specified dimension is the onewithout a colon in the slice. This isview(A,:,i,:), whereasmapslices(f, A; dims=(1,3)) usesA[:,i,:]. The functionf may mutate values in the slice without affectingA.
Base.eachrow —Functioneachrow(A::AbstractVecOrMat) <: AbstractVectorCreate aRowSlices object that is a vector of rows of matrix or vectorA. Row slices are returned asAbstractVector views ofA.
For the inverse, seestack(rows; dims=1).
See alsoeachcol,eachslice andmapslices.
Examples
julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> s = eachrow(a)2-element RowSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}}: [1, 2] [3, 4]julia> s[1]2-element view(::Matrix{Int64}, 1, :) with eltype Int64: 1 2sourceBase.eachcol —Functioneachcol(A::AbstractVecOrMat) <: AbstractVectorCreate aColumnSlices object that is a vector of columns of matrix or vectorA. Column slices are returned asAbstractVector views ofA.
For the inverse, seestack(cols) orreduce(hcat, cols).
See alsoeachrow,eachslice andmapslices.
Examples
julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> s = eachcol(a)2-element ColumnSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true}}: [1, 3] [2, 4]julia> s[1]2-element view(::Matrix{Int64}, :, 1) with eltype Int64: 1 3sourceBase.eachslice —Functioneachslice(A::AbstractArray; dims, drop=true)Create aSlices object that is an array of slices over dimensionsdims ofA, returning views that select all the data from the other dimensions inA.dims can either be an integer or a tuple of integers.
Ifdrop = true (the default), the outerSlices will drop the inner dimensions, and the ordering of the dimensions will match those indims. Ifdrop = false, then theSlices will have the same dimensionality as the underlying array, with inner dimensions having size 1.
Seestack(slices; dims) for the inverse ofeachslice(A; dims::Integer).
See alsoeachrow,eachcol,mapslices andselectdim.
Prior to Julia 1.9, this returned an iterator, and only a single dimensiondims was supported.
Examples
julia> m = [1 2 3; 4 5 6; 7 8 9]3×3 Matrix{Int64}: 1 2 3 4 5 6 7 8 9julia> s = eachslice(m, dims=1)3-element RowSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}}: [1, 2, 3] [4, 5, 6] [7, 8, 9]julia> s[1]3-element view(::Matrix{Int64}, 1, :) with eltype Int64: 1 2 3julia> eachslice(m, dims=1, drop=false)3×1 Slices{Matrix{Int64}, Tuple{Int64, Colon}, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}, 2}: [1, 2, 3] [4, 5, 6] [7, 8, 9]sourceBase.invperm —Functioninvperm(v)Return the inverse permutation ofv. IfB = A[v], thenA == B[invperm(v)].
See alsosortperm,invpermute!,isperm,permutedims.
Examples
julia> p = (2, 3, 1);julia> invperm(p)(3, 1, 2)julia> v = [2; 4; 3; 1];julia> invperm(v)4-element Vector{Int64}: 4 1 3 2julia> A = ['a','b','c','d'];julia> B = A[v]4-element Vector{Char}: 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase) 'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase) 'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase) 'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)julia> B[invperm(v)]4-element Vector{Char}: 'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase) 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase) 'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase) 'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)sourceBase.isperm —Functionisperm(v) -> BoolReturntrue ifv is a valid permutation.
Examples
julia> isperm([1; 2])truejulia> isperm([1; 3])falsesourceBase.permute! —Methodpermute!(v, p)Permute vectorv in-place, according to permutationp. No checking is done to verify thatp is a permutation.
To return a new permutation, usev[p]. This is generally faster thanpermute!(v, p); it is even faster to write into a pre-allocated output array withu .= @view v[p]. (Even thoughpermute! overwritesv in-place, it internally requires some allocation to keep track of which elements have been moved.)
See alsoinvpermute!.
Examples
julia> A = [1, 1, 3, 4];julia> perm = [2, 4, 3, 1];julia> permute!(A, perm);julia> A4-element Vector{Int64}: 1 4 3 1sourceBase.invpermute! —Functioninvpermute!(v, p)Likepermute!, but the inverse of the given permutation is applied.
Note that if you have a pre-allocated output array (e.g.u = similar(v)), it is quicker to instead employu[p] = v. (invpermute! internally allocates a copy of the data.)
Examples
julia> A = [1, 1, 3, 4];julia> perm = [2, 4, 3, 1];julia> invpermute!(A, perm);julia> A4-element Vector{Int64}: 4 1 3 1sourceBase.reverse —Methodreverse(A; dims=:)ReverseA along dimensiondims, which can be an integer (a single dimension), a tuple of integers (a tuple of dimensions) or: (reverse along all the dimensions, the default). See alsoreverse! for in-place reversal.
Examples
julia> b = Int64[1 2; 3 4]2×2 Matrix{Int64}: 1 2 3 4julia> reverse(b, dims=2)2×2 Matrix{Int64}: 2 1 4 3julia> reverse(b)2×2 Matrix{Int64}: 4 3 2 1sourceBase.reverseind —Functionreverseind(v, i)Given an indexi inreverse(v), return the corresponding index inv so thatv[reverseind(v,i)] == reverse(v)[i]. (This can be nontrivial in cases wherev contains non-ASCII characters.)
Examples
julia> s = "Julia🚀""Julia🚀"julia> r = reverse(s)"🚀ailuJ"julia> for i in eachindex(s) print(r[reverseind(r, i)]) endJulia🚀sourceBase.reverse! —FunctionSettings
This document was generated withDocumenter.jl version 1.16.0 onThursday 20 November 2025. Using Julia version 1.12.2.