A type tree for all subtypes ofNumber
inBase
is shown below. Abstract types have been marked, the rest are concrete types.
Number (Abstract Type)├─ Complex└─ Real (Abstract Type) ├─ AbstractFloat (Abstract Type) │ ├─ Float16 │ ├─ Float32 │ ├─ Float64 │ └─ BigFloat ├─ Integer (Abstract Type) │ ├─ Bool │ ├─ Signed (Abstract Type) │ │ ├─ Int8 │ │ ├─ Int16 │ │ ├─ Int32 │ │ ├─ Int64 │ │ ├─ Int128 │ │ └─ BigInt │ └─ Unsigned (Abstract Type) │ ├─ UInt8 │ ├─ UInt16 │ ├─ UInt32 │ ├─ UInt64 │ └─ UInt128 ├─ Rational └─ AbstractIrrational (Abstract Type) └─ Irrational
Core.Number
—TypeNumber
Abstract supertype for all number types.
Core.Real
—TypeReal <: Number
Abstract supertype for all real numbers.
Core.AbstractFloat
—TypeAbstractFloat <: Real
Abstract supertype for all floating point numbers.
Core.Integer
—TypeInteger <: Real
Abstract supertype for all integers (e.g.Signed
,Unsigned
, andBool
).
Examples
julia> 42 isa Integertruejulia> 1.0 isa Integerfalsejulia> isinteger(1.0)true
Core.Signed
—TypeSigned <: Integer
Abstract supertype for all signed integers.
Core.Unsigned
—TypeUnsigned <: Integer
Abstract supertype for all unsigned integers.
Built-in unsigned integers are printed in hexadecimal, with prefix0x
, and can be entered in the same way.
Examples
julia> typemax(UInt8)0xffjulia> Int(0x00d)13julia> unsigned(true)0x0000000000000001
Base.AbstractIrrational
—TypeAbstractIrrational <: Real
Number type representing an exact irrational value, which is automatically rounded to the correct precision in arithmetic operations with other numeric quantities.
SubtypesMyIrrational <: AbstractIrrational
should implement at least==(::MyIrrational, ::MyIrrational)
,hash(x::MyIrrational, h::UInt)
, andconvert(::Type{F}, x::MyIrrational) where {F <: Union{BigFloat,Float32,Float64}}
.
If a subtype is used to represent values that may occasionally be rational (e.g. a square-root type that represents√n
for integersn
will give a rational result whenn
is a perfect square), then it should also implementisinteger
,iszero
,isone
, and==
withReal
values (since all of these default tofalse
forAbstractIrrational
types), as well as defininghash
to equal that of the correspondingRational
.
Core.Float16
—TypeFloat16 <: AbstractFloat <: Real
16-bit floating point number type (IEEE 754 standard). Binary format is 1 sign, 5 exponent, 10 fraction bits.
Core.Float32
—TypeFloat32 <: AbstractFloat <: Real
32-bit floating point number type (IEEE 754 standard). Binary format is 1 sign, 8 exponent, 23 fraction bits.
The exponent for scientific notation should be entered as lower-casef
, thus2f3 === 2.0f0 * 10^3 === Float32(2_000)
. For array literals and comprehensions, the element type can be specified before the square brackets:Float32[1,4,9] == Float32[i^2 for i in 1:3]
.
Core.Float64
—TypeFloat64 <: AbstractFloat <: Real
64-bit floating point number type (IEEE 754 standard). Binary format is 1 sign, 11 exponent, 52 fraction bits. Seebitstring
,signbit
,exponent
,frexp
, andsignificand
to access various bits.
This is the default for floating point literals,1.0 isa Float64
, and for many operations such as1/2, 2pi, log(2), range(0,90,length=4)
. Unlike integers, this default does not change withSys.WORD_SIZE
.
The exponent for scientific notation can be entered ase
orE
, thus2e3 === 2.0E3 === 2.0 * 10^3
. Doing so is strongly preferred over10^n
because integers overflow, thus2.0 * 10^19 < 0
but2e19 > 0
.
Base.MPFR.BigFloat
—TypeBigFloat <: AbstractFloat
Arbitrary precision floating point number type.
Core.Bool
—TypeBool <: Integer
Boolean type, containing the valuestrue
andfalse
.
Bool
is a kind of number:false
is numerically equal to0
andtrue
is numerically equal to1
. Moreover,false
acts as a multiplicative "strong zero" againstNaN
andInf
:
julia> [true, false] == [1, 0]truejulia> 42.0 + true43.0julia> 0 .* (NaN, Inf, -Inf)(NaN, NaN, NaN)julia> false .* (NaN, Inf, -Inf)(0.0, 0.0, -0.0)
Branches viaif
and other conditionals only acceptBool
. There are no "truthy" values in Julia.
Comparisons typically returnBool
, and broadcasted comparisons may returnBitArray
instead of anArray{Bool}
.
julia> [1 2 3 4 5] .< pi1×5 BitMatrix: 1 1 1 0 0julia> map(>(pi), [1 2 3 4 5])1×5 Matrix{Bool}: 0 0 0 1 1
Core.Int8
—TypeInt8 <: Signed <: Integer
8-bit signed integer type.
Represents numbersn ∈ -128:127
. Note that such integers overflow without warning, thustypemax(Int8) + Int8(1) < 0
.
Core.UInt8
—TypeUInt8 <: Unsigned <: Integer
8-bit unsigned integer type.
Printed in hexadecimal, thus 0x07 == 7.
Core.Int16
—TypeInt16 <: Signed <: Integer
16-bit signed integer type.
Represents numbersn ∈ -32768:32767
. Note that such integers overflow without warning, thustypemax(Int16) + Int16(1) < 0
.
Core.UInt16
—TypeUInt16 <: Unsigned <: Integer
16-bit unsigned integer type.
Printed in hexadecimal, thus 0x000f == 15.
Core.Int32
—TypeInt32 <: Signed <: Integer
32-bit signed integer type.
Note that such integers overflow without warning, thustypemax(Int32) + Int32(1) < 0
.
Core.UInt32
—TypeUInt32 <: Unsigned <: Integer
32-bit unsigned integer type.
Printed in hexadecimal, thus 0x0000001f == 31.
Core.Int64
—TypeInt64 <: Signed <: Integer
64-bit signed integer type.
Note that such integers overflow without warning, thustypemax(Int64) + Int64(1) < 0
.
Core.UInt64
—TypeUInt64 <: Unsigned <: Integer
64-bit unsigned integer type.
Printed in hexadecimal, thus 0x000000000000003f == 63.
Core.Int128
—TypeInt128 <: Signed <: Integer
128-bit signed integer type.
Note that such integers overflow without warning, thustypemax(Int128) + Int128(1) < 0
.
Core.UInt128
—TypeUInt128 <: Unsigned <: Integer
128-bit unsigned integer type.
Printed in hexadecimal, thus 0x0000000000000000000000000000007f == 127.
Core.Int
—TypeInt
Sys.WORD_SIZE-bit signed integer type,Int <: Signed <: Integer <: Real
.
This is the default type of most integer literals and is an alias for eitherInt32
orInt64
, depending onSys.WORD_SIZE
. It is the type returned by functions such aslength
, and the standard type for indexing arrays.
Note that integers overflow without warning, thustypemax(Int) + 1 < 0
and10^19 < 0
. Overflow can be avoided by usingBigInt
. Very large integer literals will use a wider type, for instance10_000_000_000_000_000_000 isa Int128
.
Integer division isdiv
alias÷
, whereas/
acting on integers returnsFloat64
.
Core.UInt
—TypeUInt
Sys.WORD_SIZE-bit unsigned integer type,UInt <: Unsigned <: Integer
.
LikeInt
, the aliasUInt
may point to eitherUInt32
orUInt64
, according to the value ofSys.WORD_SIZE
on a given computer.
Printed and parsed in hexadecimal:UInt(15) === 0x000000000000000f
.
Base.GMP.BigInt
—TypeBigInt <: Signed
Arbitrary precision integer type.
Base.Complex
—TypeComplex{T<:Real} <: Number
Complex number type with real and imaginary part of typeT
.
ComplexF16
,ComplexF32
andComplexF64
are aliases forComplex{Float16}
,Complex{Float32}
andComplex{Float64}
respectively.
Base.Rational
—TypeRational{T<:Integer} <: Real
Rational number type, with numerator and denominator of typeT
. Rationals are checked for overflow.
Base.Irrational
—TypeIrrational{sym} <: AbstractIrrational
Number type representing an exact irrational value denoted by the symbolsym
, such asπ
,ℯ
andγ
.
See alsoAbstractIrrational
.
Base.digits
—Functiondigits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1)
Return an array with element typeT
(defaultInt
) of the digits ofn
in the given base, optionally padded with zeros to a specified size. More significant digits are at higher indices, such thatn == sum(digits[k]*base^(k-1) for k in eachindex(digits))
.
See alsondigits
,digits!
, and for base 2 alsobitstring
,count_ones
.
Examples
julia> digits(10)2-element Vector{Int64}: 0 1julia> digits(10, base = 2)4-element Vector{Int64}: 0 1 0 1julia> digits(-256, base = 10, pad = 5)5-element Vector{Int64}: -6 -5 -2 0 0julia> n = rand(-999:999);julia> n == evalpoly(13, digits(n, base = 13))true
Base.digits!
—Functiondigits!(array, n::Integer; base::Integer = 10)
Fills an array of the digits ofn
in the given base. More significant digits are at higher indices. If the array length is insufficient, the least significant digits are filled up to the array length. If the array length is excessive, the excess portion is filled with zeros.
Examples
julia> digits!([2, 2, 2, 2], 10, base = 2)4-element Vector{Int64}: 0 1 0 1julia> digits!([2, 2, 2, 2, 2, 2], 10, base = 2)6-element Vector{Int64}: 0 1 0 1 0 0
Base.bitstring
—Functionbitstring(n)
A string giving the literal bit representation of a primitive type.
See alsocount_ones
,count_zeros
,digits
.
Examples
julia> bitstring(Int32(4))"00000000000000000000000000000100"julia> bitstring(2.2)"0100000000000001100110011001100110011001100110011001100110011010"
Base.parse
—Functionparse(::Type{SimpleColor}, rgb::String)
An analogue oftryparse(SimpleColor, rgb::String)
(which see), that raises an error instead of returningnothing
.
parse(::Type{Platform}, triplet::AbstractString)
Parses a string platform triplet back into aPlatform
object.
parse(type, str; base)
Parse a string as a number. ForInteger
types, a base can be specified (the default is 10). For floating-point types, the string is parsed as a decimal floating-point number.Complex
types are parsed from decimal strings of the form"R±Iim"
as aComplex(R,I)
of the requested type;"i"
or"j"
can also be used instead of"im"
, and"R"
or"Iim"
are also permitted. If the string does not contain a valid number, an error is raised.
parse(Bool, str)
requires at least Julia 1.1.
Examples
julia> parse(Int, "1234")1234julia> parse(Int, "1234", base = 5)194julia> parse(Int, "afc", base = 16)2812julia> parse(Float64, "1.2e-3")0.0012julia> parse(Complex{Float64}, "3.2e-1 + 4.5im")0.32 + 4.5im
Base.tryparse
—Functiontryparse(::Type{SimpleColor}, rgb::String)
Attempt to parsergb
as aSimpleColor
. Ifrgb
starts with#
and has a length of 7, it is converted into aRGBTuple
-backedSimpleColor
. Ifrgb
starts witha
-z
,rgb
is interpreted as a color name and converted to aSymbol
-backedSimpleColor
.
Otherwise,nothing
is returned.
Examples
julia> tryparse(SimpleColor, "blue")SimpleColor(blue)julia> tryparse(SimpleColor, "#9558b2")SimpleColor(#9558b2)julia> tryparse(SimpleColor, "#nocolor")
tryparse(type, str; base)
Likeparse
, but returns either a value of the requested type, ornothing
if the string does not contain a valid number.
Base.big
—Functionbig(x)
Convert a number to a maximum precision representation (typicallyBigInt
orBigFloat
). SeeBigFloat
for information about some pitfalls with floating-point numbers.
Base.signed
—Functionsigned(T::Integer)
Convert an integer bitstype to the signed type of the same size.
Examples
julia> signed(UInt16)Int16julia> signed(UInt64)Int64
signed(x)
Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as signed without checking for overflow.
Base.unsigned
—Functionunsigned(T::Integer)
Convert an integer bitstype to the unsigned type of the same size.
Examples
julia> unsigned(Int16)UInt16julia> unsigned(UInt64)UInt64
Base.float
—Methodfloat(x)
Convert a number or array to a floating point data type.
See also:complex
,oftype
,convert
.
Examples
julia> float(1:1000)1.0:1.0:1000.0julia> float(typemax(Int32))2.147483647e9
Base.Math.significand
—Functionsignificand(x)
Extract the significand (a.k.a. mantissa) of a floating-point number. Ifx
is a non-zero finite number, then the result will be a number of the same type and sign asx
, and whose absolute value is on the interval$[1,2)$. Otherwisex
is returned.
Examples
julia> significand(15.2)1.9julia> significand(-15.2)-1.9julia> significand(-15.2) * 2^3-15.2julia> significand(-Inf), significand(Inf), significand(NaN)(-Inf, Inf, NaN)
Base.Math.exponent
—Functionexponent(x::Real) -> Int
Returns the largest integery
such that2^y ≤ abs(x)
.
Throws aDomainError
whenx
is zero, infinite, orNaN
. For any other non-subnormal floating-point numberx
, this corresponds to the exponent bits ofx
.
See alsosignbit
,significand
,frexp
,issubnormal
,log2
,ldexp
.
Examples
julia> exponent(8)3julia> exponent(6.5)2julia> exponent(-1//4)-2julia> exponent(3.142e-4)-12julia> exponent(floatmin(Float32)), exponent(nextfloat(0.0f0))(-126, -149)julia> exponent(0.0)ERROR: DomainError with 0.0:Cannot be ±0.0.[...]
Base.complex
—Methodcomplex(r, [i])
Convert real numbers or arrays to complex.i
defaults to zero.
Examples
julia> complex(7)7 + 0imjulia> complex([1, 2, 3])3-element Vector{Complex{Int64}}: 1 + 0im 2 + 0im 3 + 0im
Base.bswap
—Functionbswap(n)
Reverse the byte order ofn
.
(See alsontoh
andhton
to convert between the current native byte order and big-endian order.)
Examples
julia> a = bswap(0x10203040)0x40302010julia> bswap(a)0x10203040julia> string(1, base = 2)"1"julia> string(bswap(1), base = 2)"100000000000000000000000000000000000000000000000000000000"
Base.hex2bytes
—Functionhex2bytes(itr)
Given an iterableitr
of ASCII codes for a sequence of hexadecimal digits, returns aVector{UInt8}
of bytes corresponding to the binary representation: each successive pair of hexadecimal digits initr
gives the value of one byte in the return vector.
The length ofitr
must be even, and the returned array has half of the length ofitr
. See alsohex2bytes!
for an in-place version, andbytes2hex
for the inverse.
Callinghex2bytes
with iterators producingUInt8
values requires Julia 1.7 or later. In earlier versions, you cancollect
the iterator before callinghex2bytes
.
Examples
julia> s = string(12345, base = 16)"3039"julia> hex2bytes(s)2-element Vector{UInt8}: 0x30 0x39julia> a = b"01abEF"6-element Base.CodeUnits{UInt8, String}: 0x30 0x31 0x61 0x62 0x45 0x46julia> hex2bytes(a)3-element Vector{UInt8}: 0x01 0xab 0xef
Base.hex2bytes!
—Functionhex2bytes!(dest::AbstractVector{UInt8}, itr)
Convert an iterableitr
of bytes representing a hexadecimal string to its binary representation, similar tohex2bytes
except that the output is written in-place todest
. The length ofdest
must be half the length ofitr
.
Calling hex2bytes! with iterators producing UInt8 requires version 1.7. In earlier versions, you can collect the iterable before calling instead.
Base.bytes2hex
—Functionbytes2hex(itr) -> Stringbytes2hex(io::IO, itr)
Convert an iteratoritr
of bytes to its hexadecimal string representation, either returning aString
viabytes2hex(itr)
or writing the string to anio
stream viabytes2hex(io, itr)
. The hexadecimal characters are all lowercase.
Callingbytes2hex
with arbitrary iterators producingUInt8
values requires Julia 1.7 or later. In earlier versions, you cancollect
the iterator before callingbytes2hex
.
Examples
julia> a = string(12345, base = 16)"3039"julia> b = hex2bytes(a)2-element Vector{UInt8}: 0x30 0x39julia> bytes2hex(b)"3039"
Base.one
—Functionone(x)one(T::type)
Return a multiplicative identity forx
: a value such thatone(x)*x == x*one(x) == x
. Alternativelyone(T)
can take a typeT
, in which caseone
returns a multiplicative identity for anyx
of typeT
.
If possible,one(x)
returns a value of the same type asx
, andone(T)
returns a value of typeT
. However, this may not be the case for types representing dimensionful quantities (e.g. time in days), since the multiplicative identity must be dimensionless. In that case,one(x)
should return an identity value of the same precision (and shape, for matrices) asx
.
If you want a quantity that is of the same type asx
, or of typeT
, even ifx
is dimensionful, useoneunit
instead.
See also theidentity
function, andI
inLinearAlgebra
for the identity matrix.
Examples
julia> one(3.7)1.0julia> one(Int)1julia> import Dates; one(Dates.Day(1))1
Base.oneunit
—Functiononeunit(x::T)oneunit(T::Type)
ReturnT(one(x))
, whereT
is either the type of the argument or (if a type is passed) the argument. This differs fromone
for dimensionful quantities:one
is dimensionless (a multiplicative identity) whileoneunit
is dimensionful (of the same type asx
, or of typeT
).
Examples
julia> oneunit(3.7)1.0julia> import Dates; oneunit(Dates.Day)1 day
Base.zero
—Functionzero(x)zero(::Type)
Get the additive identity element for the type ofx
(x
can also specify the type itself).
See alsoiszero
,one
,oneunit
,oftype
.
Examples
julia> zero(1)0julia> zero(big"2.0")0.0julia> zero(rand(2,2))2×2 Matrix{Float64}: 0.0 0.0 0.0 0.0
Base.im
—Constantim
The imaginary unit.
Examples
julia> im * im-1 + 0imjulia> (2.0 + 3im)^2-5.0 + 12.0im
Base.MathConstants.pi
—Constantπpi
The constant pi.
Unicodeπ
can be typed by writing\pi
then pressing tab in the Julia REPL, and in many editors.
See also:sinpi
,sincospi
,deg2rad
.
Examples
julia> piπ = 3.1415926535897...julia> 1/2pi0.15915494309189535
Base.MathConstants.ℯ
—Constantℯe
The constant ℯ.
Unicodeℯ
can be typed by writing\euler
and pressing tab in the Julia REPL, and in many editors.
Examples
julia> ℯℯ = 2.7182818284590...julia> log(ℯ)1julia> ℯ^(im)π ≈ -1true
Base.MathConstants.catalan
—Constantcatalan
Catalan's constant.
Examples
julia> Base.MathConstants.catalancatalan = 0.9159655941772...julia> sum(log(x)/(1+x^2) for x in 1:0.01:10^6) * 0.010.9159466120554123
Base.MathConstants.eulergamma
—Constantγeulergamma
Euler's constant.
Examples
julia> Base.MathConstants.eulergammaγ = 0.5772156649015...julia> dx = 10^-6;julia> sum(-exp(-x) * log(x) for x in dx:dx:100) * dx0.5772078382499133
Base.MathConstants.golden
—Constantφgolden
The golden ratio.
Examples
julia> Base.MathConstants.goldenφ = 1.6180339887498...julia> (2ans - 1)^2 ≈ 5true
Base.Inf
—ConstantInf, Inf64
Positive infinity of typeFloat64
.
See also:isfinite
,typemax
,NaN
,Inf32
.
Examples
julia> π/0Infjulia> +1.0 / -0.0-Infjulia> ℯ^-Inf0.0
Base.Inf64
—ConstantInf, Inf64
Positive infinity of typeFloat64
.
See also:isfinite
,typemax
,NaN
,Inf32
.
Examples
julia> π/0Infjulia> +1.0 / -0.0-Infjulia> ℯ^-Inf0.0
Base.Inf32
—ConstantInf32
Positive infinity of typeFloat32
.
Base.Inf16
—ConstantInf16
Positive infinity of typeFloat16
.
Base.NaN
—ConstantNaN, NaN64
A not-a-number value of typeFloat64
.
See also:isnan
,missing
,NaN32
,Inf
.
Examples
julia> 0/0NaNjulia> Inf - InfNaNjulia> NaN == NaN, isequal(NaN, NaN), isnan(NaN)(false, true, true)
Base.NaN64
—ConstantNaN, NaN64
A not-a-number value of typeFloat64
.
See also:isnan
,missing
,NaN32
,Inf
.
Examples
julia> 0/0NaNjulia> Inf - InfNaNjulia> NaN == NaN, isequal(NaN, NaN), isnan(NaN)(false, true, true)
Base.NaN32
—ConstantBase.NaN16
—ConstantBase.issubnormal
—Functionissubnormal(f) -> Bool
Test whether a floating point number is subnormal.
An IEEE floating point number issubnormal when its exponent bits are zero and its significand is not zero.
Examples
julia> floatmin(Float32)1.1754944f-38julia> issubnormal(1.0f-37)falsejulia> issubnormal(1.0f-38)true
Base.isfinite
—Functionisfinite(f) -> Bool
Test whether a number is finite.
Examples
julia> isfinite(5)truejulia> isfinite(NaN32)false
Base.isinf
—FunctionBase.isnan
—Functionisnan(f) -> Bool
Test whether a number value is a NaN, an indeterminate value which is neither an infinity nor a finite number ("not a number").
Base.iszero
—Functioniszero(x)
Returntrue
ifx == zero(x)
; ifx
is an array, this checks whether all of the elements ofx
are zero.
See also:isone
,isinteger
,isfinite
,isnan
.
Examples
julia> iszero(0.0)truejulia> iszero([1, 9, 0])falsejulia> iszero([false, 0, 0])true
Base.isone
—Functionisone(x)
Returntrue
ifx == one(x)
; ifx
is an array, this checks whetherx
is an identity matrix.
Examples
julia> isone(1.0)truejulia> isone([1 0; 0 2])falsejulia> isone([1 0; 0 true])true
Base.nextfloat
—Functionnextfloat(x::AbstractFloat, n::Integer)
The result ofn
iterative applications ofnextfloat
tox
ifn >= 0
, or-n
applications ofprevfloat
ifn < 0
.
nextfloat(x::AbstractFloat)
Return the smallest floating point numbery
of the same type asx
suchx < y
. If no suchy
exists (e.g. ifx
isInf
orNaN
), then returnx
.
See also:prevfloat
,eps
,issubnormal
.
Base.prevfloat
—Functionprevfloat(x::AbstractFloat, n::Integer)
The result ofn
iterative applications ofprevfloat
tox
ifn >= 0
, or-n
applications ofnextfloat
ifn < 0
.
prevfloat(x::AbstractFloat)
Return the largest floating point numbery
of the same type asx
suchy < x
. If no suchy
exists (e.g. ifx
is-Inf
orNaN
), then returnx
.
Base.isinteger
—Functionisinteger(x) -> Bool
Test whetherx
is numerically equal to some integer.
Examples
julia> isinteger(4.0)true
Base.isreal
—Functionisreal(x) -> Bool
Test whetherx
or all its elements are numerically equal to some real number including infinities and NaNs.isreal(x)
is true ifisequal(x, real(x))
is true.
Examples
julia> isreal(5.)truejulia> isreal(1 - 3im)falsejulia> isreal(Inf + 0im)truejulia> isreal([4.; complex(0,1)])false
Core.Float32
—MethodFloat32(x [, mode::RoundingMode])
Create aFloat32
fromx
. Ifx
is not exactly representable thenmode
determines howx
is rounded.
Examples
julia> Float32(1/3, RoundDown)0.3333333f0julia> Float32(1/3, RoundUp)0.33333334f0
SeeRoundingMode
for available rounding modes.
Core.Float64
—MethodFloat64(x [, mode::RoundingMode])
Create aFloat64
fromx
. Ifx
is not exactly representable thenmode
determines howx
is rounded.
Examples
julia> Float64(pi, RoundDown)3.141592653589793julia> Float64(pi, RoundUp)3.1415926535897936
SeeRoundingMode
for available rounding modes.
Base.Rounding.rounding
—Functionrounding(T)
Get the current floating point rounding mode for typeT
, controlling the rounding of basic arithmetic functions (+
,-
,*
,/
andsqrt
) and type conversion.
SeeRoundingMode
for available modes.
Base.Rounding.setrounding
—Methodsetrounding(T, mode)
Set the rounding mode of floating point typeT
, controlling the rounding of basic arithmetic functions (+
,-
,*
,/
andsqrt
) and type conversion. Other numerical functions may give incorrect or invalid values when using rounding modes other than the defaultRoundNearest
.
Note that this is currently only supported forT == BigFloat
.
This function is not thread-safe. It will affect code running on all threads, but its behavior is undefined if called concurrently with computations that use the setting.
Base.Rounding.setrounding
—Methodsetrounding(f::Function, T, mode)
Change the rounding mode of floating point typeT
for the duration off
. It is logically equivalent to:
old = rounding(T)setrounding(T, mode)f()setrounding(T, old)
SeeRoundingMode
for available rounding modes.
Base.Rounding.get_zero_subnormals
—Functionget_zero_subnormals() -> Bool
Returnfalse
if operations on subnormal floating-point values ("denormals") obey rules for IEEE arithmetic, andtrue
if they might be converted to zeros.
This function only affects the current thread.
Base.Rounding.set_zero_subnormals
—Functionset_zero_subnormals(yes::Bool) -> Bool
Ifyes
isfalse
, subsequent floating-point operations follow rules for IEEE arithmetic on subnormal values ("denormals"). Otherwise, floating-point operations are permitted (but not required) to convert subnormal inputs or outputs to zero. Returnstrue
unlessyes==true
but the hardware does not support zeroing of subnormal numbers.
set_zero_subnormals(true)
can speed up some computations on some hardware. However, it can break identities such as(x-y==0) == (x==y)
.
This function only affects the current thread.
Base.count_ones
—Functioncount_ones(x::Integer) -> Integer
Number of ones in the binary representation ofx
.
Examples
julia> count_ones(7)3julia> count_ones(Int32(-1))32
Base.count_zeros
—Functioncount_zeros(x::Integer) -> Integer
Number of zeros in the binary representation ofx
.
Examples
julia> count_zeros(Int32(2 ^ 16 - 1))16julia> count_zeros(-1)0
Base.leading_zeros
—Functionleading_zeros(x::Integer) -> Integer
Number of zeros leading the binary representation ofx
.
Examples
julia> leading_zeros(Int32(1))31
Base.leading_ones
—Functionleading_ones(x::Integer) -> Integer
Number of ones leading the binary representation ofx
.
Examples
julia> leading_ones(UInt32(2 ^ 32 - 2))31
Base.trailing_zeros
—Functiontrailing_zeros(x::Integer) -> Integer
Number of zeros trailing the binary representation ofx
.
Examples
julia> trailing_zeros(2)1
Base.trailing_ones
—Functiontrailing_ones(x::Integer) -> Integer
Number of ones trailing the binary representation ofx
.
Examples
julia> trailing_ones(3)2
Base.isodd
—Functionisodd(x::Number) -> Bool
Returntrue
ifx
is an odd integer (that is, an integer not divisible by 2), andfalse
otherwise.
Non-Integer
arguments require Julia 1.7 or later.
Examples
julia> isodd(9)truejulia> isodd(10)false
Base.iseven
—Functioniseven(x::Number) -> Bool
Returntrue
ifx
is an even integer (that is, an integer divisible by 2), andfalse
otherwise.
Non-Integer
arguments require Julia 1.7 or later.
Examples
julia> iseven(9)falsejulia> iseven(10)true
Core.@int128_str
—Macro@int128_str str
Parsestr
as anInt128
. Throw anArgumentError
if the string is not a valid integer.
Examples
julia> int128"123456789123"123456789123julia> int128"123456789123.4"ERROR: LoadError: ArgumentError: invalid base 10 digit '.' in "123456789123.4"[...]
Core.@uint128_str
—Macro@uint128_str str
Parsestr
as anUInt128
. Throw anArgumentError
if the string is not a valid integer.
Examples
julia> uint128"123456789123"0x00000000000000000000001cbe991a83julia> uint128"-123456789123"ERROR: LoadError: ArgumentError: invalid base 10 digit '-' in "-123456789123"[...]
TheBigFloat
andBigInt
types implements arbitrary-precision floating point and integer arithmetic, respectively. ForBigFloat
theGNU MPFR library is used, and forBigInt
theGNU Multiple Precision Arithmetic Library (GMP) is used.
Base.MPFR.BigFloat
—MethodBigFloat(x::Union{Real, AbstractString} [, rounding::RoundingMode=rounding(BigFloat)]; [precision::Integer=precision(BigFloat)])
Create an arbitrary precision floating point number fromx
, with precisionprecision
. Therounding
argument specifies the direction in which the result should be rounded if the conversion cannot be done exactly. If not provided, these are set by the current global values.
BigFloat(x::Real)
is the same asconvert(BigFloat,x)
, except ifx
itself is alreadyBigFloat
, in which case it will return a value with the precision set to the current global precision;convert
will always returnx
.
BigFloat(x::AbstractString)
is identical toparse
. This is provided for convenience since decimal literals are converted toFloat64
when parsed, soBigFloat(2.1)
may not yield what you expect.
See also:
precision
as a keyword argument requires at least Julia 1.1. In Julia 1.0precision
is the second positional argument (BigFloat(x, precision)
).
Examples
julia> BigFloat(2.1) # 2.1 here is a Float642.100000000000000088817841970012523233890533447265625julia> BigFloat("2.1") # the closest BigFloat to 2.12.099999999999999999999999999999999999999999999999999999999999999999999999999986julia> BigFloat("2.1", RoundUp)2.100000000000000000000000000000000000000000000000000000000000000000000000000021julia> BigFloat("2.1", RoundUp, precision=128)2.100000000000000000000000000000000000007
Base.precision
—Functionprecision(num::AbstractFloat; base::Integer=2)precision(T::Type; base::Integer=2)
Get the precision of a floating point number, as defined by the effective number of bits in the significand, or the precision of a floating-point typeT
(its current default, ifT
is a variable-precision type likeBigFloat
).
Ifbase
is specified, then it returns the maximum corresponding number of significand digits in that base.
Thebase
keyword requires at least Julia 1.8.
Base.MPFR.setprecision
—Functionsetprecision([T=BigFloat,] precision::Int; base=2)
Set the precision (in bits, by default) to be used forT
arithmetic. Ifbase
is specified, then the precision is the minimum required to give at leastprecision
digits in the givenbase
.
This function is not thread-safe. It will affect code running on all threads, but its behavior is undefined if called concurrently with computations that use the setting.
Thebase
keyword requires at least Julia 1.8.
setprecision(f::Function, [T=BigFloat,] precision::Integer; base=2)
Change theT
arithmetic precision (in the givenbase
) for the duration off
. It is logically equivalent to:
old = precision(BigFloat)setprecision(BigFloat, precision)f()setprecision(BigFloat, old)
Often used assetprecision(T, precision) do ... end
Note:nextfloat()
,prevfloat()
do not use the precision mentioned bysetprecision
.
Thebase
keyword requires at least Julia 1.8.
Base.GMP.BigInt
—MethodBigInt(x)
Create an arbitrary precision integer.x
may be anInt
(or anything that can be converted to anInt
). The usual mathematical operators are defined for this type, and results are promoted to aBigInt
.
Instances can be constructed from strings viaparse
, or using thebig
string literal.
Examples
julia> parse(BigInt, "42")42julia> big"313"313julia> BigInt(10)^1910000000000000000000
Core.@big_str
—Macro@big_str str
Parse a string into aBigInt
orBigFloat
, and throw anArgumentError
if the string is not a valid number. For integers_
is allowed in the string as a separator.
Examples
julia> big"123_456"123456julia> big"7891.5"7891.5julia> big"_"ERROR: ArgumentError: invalid number format _ for BigInt or BigFloat[...]
Using@big_str
for constructingBigFloat
values may not result in the behavior that might be naively expected: as a macro,@big_str
obeys the global precision (setprecision
) and rounding mode (setrounding
) settings as they are atload time. Thus, a function like() -> precision(big"0.3")
returns a constant whose value depends on the value of the precision at the point when the function is defined,not at the precision at the time when the function is called.
Settings
This document was generated withDocumenter.jl version 1.8.0 onWednesday 9 July 2025. Using Julia version 1.11.6.