Movatterモバイル変換


[0]ホーム

URL:


GitHub

Arrays

Constructors and Types

Core.AbstractArrayType
AbstractArray{T,N}

Supertype forN-dimensional arrays (or array-like types) with elements of typeT.Array and other types are subtypes of this. See the manual section on theAbstractArray interface.

See also:AbstractVector,AbstractMatrix,eltype,ndims.

source
Base.AbstractVectorType
AbstractVector{T}

Supertype for one-dimensional arrays (or array-like types) with elements of typeT. Alias forAbstractArray{T,1}.

source
Base.AbstractMatrixType
AbstractMatrix{T}

Supertype for two-dimensional arrays (or array-like types) with elements of typeT. Alias forAbstractArray{T,2}.

source
Base.AbstractVecOrMatType
AbstractVecOrMat{T}

Union type ofAbstractVector{T} andAbstractMatrix{T}.

source
Core.ArrayType
Array{T,N} <: AbstractArray{T,N}

N-dimensional dense array with elements of typeT.

source
Core.ArrayMethod
Array{T}(undef, dims)Array{T,N}(undef, dims)

Construct an uninitializedN-dimensionalArray containing elements of typeT.N can either be supplied explicitly, as inArray{T,N}(undef, dims), or be determined by the length or number ofdims.dims may be a tuple or a series of integer arguments corresponding to the lengths in each dimension. If the rankN is supplied explicitly, then it must match the length or number ofdims. Hereundef is theUndefInitializer.

Examples

julia> A = Array{Float64, 2}(undef, 2, 3) # N given explicitly2×3 Matrix{Float64}: 6.90198e-310  6.90198e-310  6.90198e-310 6.90198e-310  6.90198e-310  0.0julia> B = Array{Float64}(undef, 4) # N determined by the input4-element Vector{Float64}:   2.360075077e-314 NaN   2.2671131793e-314   2.299821756e-314julia> similar(B, 2, 4, 1) # use typeof(B), and the given size2×4×1 Array{Float64, 3}:[:, :, 1] = 2.26703e-314  2.26708e-314  0.0           2.80997e-314 0.0           2.26703e-314  2.26708e-314  0.0
source
Core.ArrayMethod
Array{T}(nothing, dims)Array{T,N}(nothing, dims)

Construct anN-dimensionalArray containing elements of typeT, initialized withnothing entries. Element typeT must be able to hold these values, i.e.Nothing <: T.

Examples

julia> Array{Union{Nothing, String}}(nothing, 2)2-element Vector{Union{Nothing, String}}: nothing nothingjulia> Array{Union{Nothing, Int}}(nothing, 2, 3)2×3 Matrix{Union{Nothing, Int64}}: nothing  nothing  nothing nothing  nothing  nothing
source
Core.ArrayMethod
Array{T}(missing, dims)Array{T,N}(missing, dims)

Construct anN-dimensionalArray containing elements of typeT, initialized withmissing entries. Element typeT must be able to hold these values, i.e.Missing <: T.

Examples

julia> Array{Union{Missing, String}}(missing, 2)2-element Vector{Union{Missing, String}}: missing missingjulia> Array{Union{Missing, Int}}(missing, 2, 3)2×3 Matrix{Union{Missing, Int64}}: missing  missing  missing missing  missing  missing
source
Core.UndefInitializerType
UndefInitializer

Singleton type used in array initialization, indicating the array-constructor-caller would like an uninitialized array. See alsoundef, an alias forUndefInitializer().

Examples

julia> Array{Float64, 1}(UndefInitializer(), 3)3-element Array{Float64, 1}: 2.2752528595e-314 2.202942107e-314 2.275252907e-314
source
Core.undefConstant
undef

Alias forUndefInitializer(), which constructs an instance of the singleton typeUndefInitializer, used in array initialization to indicate the array-constructor-caller would like an uninitialized array.

See also:missing,similar.

Examples

julia> Array{Float64, 1}(undef, 3)3-element Vector{Float64}: 2.2752528595e-314 2.202942107e-314 2.275252907e-314
source
Base.VectorType
Vector{T} <: AbstractVector{T}

One-dimensional dense array with elements of typeT, often used to represent a mathematical vector. Alias forArray{T,1}.

See alsoempty,similar andzero for creating vectors.

source
Base.VectorMethod
Vector{T}(undef, n)

Construct an uninitializedVector{T} of lengthn.

Examples

julia> Vector{Float64}(undef, 3)3-element Array{Float64, 1}: 6.90966e-310 6.90966e-310 6.90966e-310
source
Base.VectorMethod
Vector{T}(nothing, m)

Construct aVector{T} of lengthm, initialized withnothing entries. Element typeT must be able to hold these values, i.e.Nothing <: T.

Examples

julia> Vector{Union{Nothing, String}}(nothing, 2)2-element Vector{Union{Nothing, String}}: nothing nothing
source
Base.VectorMethod
Vector{T}(missing, m)

Construct aVector{T} of lengthm, initialized withmissing entries. Element typeT must be able to hold these values, i.e.Missing <: T.

Examples

julia> Vector{Union{Missing, String}}(missing, 2)2-element Vector{Union{Missing, String}}: missing missing
source
Base.MatrixType
Matrix{T} <: AbstractMatrix{T}

Two-dimensional dense array with elements of typeT, often used to represent a mathematical matrix. Alias forArray{T,2}.

See alsofill,zeros,undef andsimilar for creating matrices.

source
Base.MatrixMethod
Matrix{T}(undef, m, n)

Construct an uninitializedMatrix{T} of sizem×n.

Examples

julia> Matrix{Float64}(undef, 2, 3)2×3 Array{Float64, 2}: 2.36365e-314  2.28473e-314    5.0e-324 2.26704e-314  2.26711e-314  NaNjulia> similar(ans, Int32, 2, 2)2×2 Matrix{Int32}: 490537216  1277177453         1  1936748399
source
Base.MatrixMethod
Matrix{T}(nothing, m, n)

Construct aMatrix{T} of sizem×n, initialized withnothing entries. Element typeT must be able to hold these values, i.e.Nothing <: T.

Examples

julia> Matrix{Union{Nothing, String}}(nothing, 2, 3)2×3 Matrix{Union{Nothing, String}}: nothing  nothing  nothing nothing  nothing  nothing
source
Base.MatrixMethod
Matrix{T}(missing, m, n)

Construct aMatrix{T} of sizem×n, initialized withmissing entries. Element typeT must be able to hold these values, i.e.Missing <: T.

Examples

julia> Matrix{Union{Missing, String}}(missing, 2, 3)2×3 Matrix{Union{Missing, String}}: missing  missing  missing missing  missing  missing
source
Base.VecOrMatType
VecOrMat{T}

Union type ofVector{T} andMatrix{T} which allows functions to accept either a Matrix or a Vector.

Examples

julia> Vector{Float64} <: VecOrMat{Float64}truejulia> Matrix{Float64} <: VecOrMat{Float64}truejulia> Array{Float64, 3} <: VecOrMat{Float64}false
source
Core.DenseArrayType
DenseArray{T, N} <: AbstractArray{T,N}

N-dimensional dense array with elements of typeT. The elements of a dense array are stored contiguously in memory.

source
Base.DenseVectorType
DenseVector{T}

One-dimensionalDenseArray with elements of typeT. Alias forDenseArray{T,1}.

source
Base.DenseMatrixType
DenseMatrix{T}

Two-dimensionalDenseArray with elements of typeT. Alias forDenseArray{T,2}.

source
Base.DenseVecOrMatType
DenseVecOrMat{T}

Union type ofDenseVector{T} andDenseMatrix{T}.

source
Base.StridedArrayType
StridedArray{T, N}

A hard-codedUnion of common array types that follow thestrided array interface, with elements of typeT andN dimensions.

IfA is aStridedArray, then its elements are stored in memory with offsets, which may vary between dimensions but are constant within a dimension. For example,A could have stride 2 in dimension 1, and stride 3 in dimension 2. IncrementingA along dimensiond jumps in memory by [stride(A, d)] slots. Strided arrays are particularly important and useful because they can sometimes be passed directly as pointers to foreign language libraries like BLAS.

source
Base.StridedVectorType
StridedVector{T}

One dimensionalStridedArray with elements of typeT.

source
Base.StridedMatrixType
StridedMatrix{T}

Two dimensionalStridedArray with elements of typeT.

source
Base.StridedVecOrMatType
StridedVecOrMat{T}

Union type ofStridedVector andStridedMatrix with elements of typeT.

source
Core.GenericMemoryType
GenericMemory{kind::Symbol, T, addrspace=Core.CPU} <: DenseVector{T}

Fixed-sizeDenseVector{T}.

kind can currently be either:not_atomic or:atomic. For details on what:atomic implies, seeAtomicMemory

addrspace can currently only be set to Core.CPU. It is designed to to permit extension by other systems such as GPUs, which might define values such as:

module CUDAconst Generic = bitcast(Core.AddrSpace{CUDA}, 0)const Global = bitcast(Core.AddrSpace{CUDA}, 1)end

The exact semantics of these other addrspaces is defined by the specific backend, but will error if the user is attempting to access these on the CPU.

Julia 1.11

This type requires Julia 1.11 or later.

source
Core.MemoryType
Memory{T} == GenericMemory{:not_atomic, T, Core.CPU}

Fixed-sizeDenseVector{T}.

Julia 1.11

This type requires Julia 1.11 or later.

source
Core.memoryrefFunction
`memoryref(::GenericMemory)`

Construct aGenericMemoryRef from a memory object. This does not fail, but the resulting memory will point out-of-bounds if and only if the memory is empty.

source
memoryref(::GenericMemory, index::Integer)memoryref(::GenericMemoryRef, index::Integer)

Construct aGenericMemoryRef from a memory object and an offset index (1-based) which can also be negative. This always returns an inbounds object, and will throw an error if that is not possible (because the index would result in a shift out-of-bounds of the underlying memory).

source
Base.SlicesType
Slices{P,SM,AX,S,N} <: AbstractSlices{S,N}

AnAbstractArray of slices into a parent array over specified dimension(s), returning views that select all the data from the other dimension(s).

These should typically be constructed byeachslice,eachcol oreachrow.

parent(s::Slices) will return the parent array.

source
Base.RowSlicesType
RowSlices{M,AX,S}

A special case ofSlices that is a vector of row slices of a matrix, as constructed byeachrow.

parent can be used to get the underlying matrix.

source
Base.ColumnSlicesType
ColumnSlices{M,AX,S}

A special case ofSlices that is a vector of column slices of a matrix, as constructed byeachcol.

parent can be used to get the underlying matrix.

source
Base.getindexMethod
getindex(type[, elements...])

Construct a 1-d array of the specified type. This is usually called with the syntaxType[]. Element values can be specified usingType[a,b,c,...].

Examples

julia> Int8[1, 2, 3]3-element Vector{Int8}: 1 2 3julia> getindex(Int8, 1, 2, 3)3-element Vector{Int8}: 1 2 3
source
Base.zerosFunction
zeros([T=Float64,] dims::Tuple)zeros([T=Float64,] dims...)

Create anArray, with element typeT, of all zeros with size specified bydims. See alsofill,ones,zero.

Examples

julia> zeros(1)1-element Vector{Float64}: 0.0julia> zeros(Int8, 2, 3)2×3 Matrix{Int8}: 0  0  0 0  0  0
source
Base.onesFunction
ones([T=Float64,] dims::Tuple)ones([T=Float64,] dims...)

Create anArray, with element typeT, of all ones with size specified bydims. See alsofill,zeros.

Examples

julia> ones(1,2)1×2 Matrix{Float64}: 1.0  1.0julia> ones(ComplexF64, 2, 3)2×3 Matrix{ComplexF64}: 1.0+0.0im  1.0+0.0im  1.0+0.0im 1.0+0.0im  1.0+0.0im  1.0+0.0im
source
Base.BitArrayType
BitArray{N} <: AbstractArray{Bool, N}

Space-efficientN-dimensional boolean array, using just one bit for each boolean value.

BitArrays pack up to 64 values into every 8 bytes, resulting in an 8x space efficiency overArray{Bool, N} and allowing some operations to work on 64 values at once.

By default, Julia returnsBitArrays frombroadcasting operations that generate boolean elements (including dotted-comparisons like.==) as well as from the functionstrues andfalses.

Note

Due to its packed storage format, concurrent access to the elements of aBitArray where at least one of them is a write is not thread-safe.

source
Base.BitArrayMethod
BitArray(undef, dims::Integer...)BitArray{N}(undef, dims::NTuple{N,Int})

Construct an undefBitArray with the given dimensions. Behaves identically to theArray constructor. Seeundef.

Examples

julia> BitArray(undef, 2, 2)2×2 BitMatrix: 0  0 0  0julia> BitArray(undef, (3, 1))3×1 BitMatrix: 0 0 0
source
Base.BitArrayMethod
BitArray(itr)

Construct aBitArray generated by the given iterable object. The shape is inferred from theitr object.

Examples

julia> BitArray([1 0; 0 1])2×2 BitMatrix: 1  0 0  1julia> BitArray(x+y == 3 for x = 1:2, y = 1:3)2×3 BitMatrix: 0  1  0 1  0  0julia> BitArray(x+y == 3 for x = 1:2 for y = 1:3)6-element BitVector: 0 1 0 1 0 0
source
Base.truesFunction
trues(dims)

Create aBitArray with all values set totrue.

Examples

julia> trues(2,3)2×3 BitMatrix: 1  1  1 1  1  1
source
Base.falsesFunction
falses(dims)

Create aBitArray with all values set tofalse.

Examples

julia> falses(2,3)2×3 BitMatrix: 0  0  0 0  0  0
source
Base.fillFunction
fill(value, dims::Tuple)fill(value, dims...)

Create an array of sizedims with every location set tovalue.

For example,fill(1.0, (5,5)) returns a 5×5 array of floats, with1.0 in every location of the array.

The dimension lengthsdims may be specified as either a tuple or a sequence of arguments. AnN-length tuple orN arguments following thevalue specify anN-dimensional array. Thus, a common idiom for creating a zero-dimensional array with its only location set tox isfill(x).

Every location of the returned array is set to (and is thus=== to) thevalue that was passed; this means that if thevalue is itself modified, all elements of thefilled array will reflect that modification because they'restill that veryvalue. This is of no concern withfill(1.0, (5,5)) as thevalue1.0 is immutable and cannot itself be modified, but can be unexpected with mutable values like — most commonly — arrays. For example,fill([], 3) placesthe very same empty array in all three locations of the returned vector:

julia> v = fill([], 3)3-element Vector{Vector{Any}}: [] [] []julia> v[1] === v[2] === v[3]truejulia> value = v[1]Any[]julia> push!(value, 867_5309)1-element Vector{Any}: 8675309julia> v3-element Vector{Vector{Any}}: [8675309] [8675309] [8675309]

To create an array of many independent inner arrays, use acomprehension instead. This creates a new and distinct array on each iteration of the loop:

julia> v2 = [[] for _ in 1:3]3-element Vector{Vector{Any}}: [] [] []julia> v2[1] === v2[2] === v2[3]falsejulia> push!(v2[1], 8675309)1-element Vector{Any}: 8675309julia> v23-element Vector{Vector{Any}}: [8675309] [] []

See also:fill!,zeros,ones,similar.

Examples

julia> fill(1.0, (2,3))2×3 Matrix{Float64}: 1.0  1.0  1.0 1.0  1.0  1.0julia> fill(42)0-dimensional Array{Int64, 0}:42julia> A = fill(zeros(2), 2) # sets both elements to the same [0.0, 0.0] vector2-element Vector{Vector{Float64}}: [0.0, 0.0] [0.0, 0.0]julia> A[1][1] = 42; # modifies the filled value to be [42.0, 0.0]julia> A # both A[1] and A[2] are the very same vector2-element Vector{Vector{Float64}}: [42.0, 0.0] [42.0, 0.0]
source
Base.fill!Function
fill!(A, x)

Fill arrayA with the valuex. Ifx is an object reference, all elements will refer to the same object.fill!(A, Foo()) will returnA filled with the result of evaluatingFoo() once.

Examples

julia> A = zeros(2,3)2×3 Matrix{Float64}: 0.0  0.0  0.0 0.0  0.0  0.0julia> fill!(A, 2.)2×3 Matrix{Float64}: 2.0  2.0  2.0 2.0  2.0  2.0julia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(undef, 3), a); a[1] = 2; A3-element Vector{Vector{Int64}}: [2, 1, 1] [2, 1, 1] [2, 1, 1]julia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(undef, 3), f())3-element Vector{Int64}: 1 1 1
source
Base.emptyFunction
empty(x::Tuple)

Return an empty tuple,().

source
empty(v::AbstractVector, [eltype])

Create an empty vector similar tov, optionally changing theeltype.

See also:empty!,isempty,isassigned.

Examples

julia> empty([1.0, 2.0, 3.0])Float64[]julia> empty([1.0, 2.0, 3.0], String)String[]
source
empty(a::AbstractDict, [index_type=keytype(a)], [value_type=valtype(a)])

Create an emptyAbstractDict container which can accept indices of typeindex_type and values of typevalue_type. The second and third arguments are optional and default to the input'skeytype andvaltype, respectively. (If only one of the two types is specified, it is assumed to be thevalue_type, and theindex_type we default tokeytype(a)).

CustomAbstractDict subtypes may choose which specific dictionary type is best suited to return for the given index and value types, by specializing on the three-argument signature. The default is to return an emptyDict.

source
Base.similarFunction
similar(A::AbstractSparseMatrixCSC{Tv,Ti}, [::Type{TvNew}, ::Type{TiNew}, m::Integer, n::Integer]) where {Tv,Ti}

Create an uninitialized mutable array with the given element type, index type, and size, based upon the given sourceSparseMatrixCSC. The new sparse matrix maintains the structure of the original sparse matrix, except in the case where dimensions of the output matrix are different from the output.

The output matrix has zeros in the same locations as the input, but uninitialized values for the nonzero locations.

similar(array, [element_type=eltype(array)], [dims=size(array)])

Create an uninitialized mutable array with the given element type and size, based upon the given source array. The second and third arguments are both optional, defaulting to the given array'seltype andsize. The dimensions may be specified either as a single tuple argument or as a series of integer arguments.

Custom AbstractArray subtypes may choose which specific array type is best-suited to return for the given element type and dimensionality. If they do not specialize this method, the default is anArray{element_type}(undef, dims...).

For example,similar(1:10, 1, 4) returns an uninitializedArray{Int,2} since ranges are neither mutable nor support 2 dimensions:

julia> similar(1:10, 1, 4)1×4 Matrix{Int64}: 4419743872  4374413872  4419743888  0

Conversely,similar(trues(10,10), 2) returns an uninitializedBitVector with two elements sinceBitArrays are both mutable and can support 1-dimensional arrays:

julia> similar(trues(10,10), 2)2-element BitVector: 0 0

SinceBitArrays can only store elements of typeBool, however, if you request a different element type it will create a regularArray instead:

julia> similar(falses(10), Float64, 2, 4)2×4 Matrix{Float64}: 2.18425e-314  2.18425e-314  2.18425e-314  2.18425e-314 2.18425e-314  2.18425e-314  2.18425e-314  2.18425e-314

See also:undef,isassigned.

source
similar(storagetype, axes)

Create an uninitialized mutable array analogous to that specified bystoragetype, but withaxes specified by the last argument.

Examples:

similar(Array{Int}, axes(A))

creates an array that "acts like" anArray{Int} (and might indeed be backed by one), but which is indexed identically toA. IfA has conventional indexing, this will be identical toArray{Int}(undef, size(A)), but ifA has unconventional indexing then the indices of the result will matchA.

similar(BitArray, (axes(A, 2),))

would create a 1-dimensional logical array whose indices match those of the columns ofA.

source

Basic functions

Base.ndimsFunction
ndims(A::AbstractArray) -> Integer

Return the number of dimensions ofA.

See also:size,axes.

Examples

julia> A = fill(1, (3,4,5));julia> ndims(A)3
source
Base.sizeFunction
size(A::AbstractArray, [dim])

Return a tuple containing the dimensions ofA. Optionally you can specify a dimension to just get the length of that dimension.

Note thatsize may not be defined for arrays with non-standard indices, in which caseaxes may be useful. See the manual chapter onarrays with custom indices.

See also:length,ndims,eachindex,sizeof.

Examples

julia> A = fill(1, (2,3,4));julia> size(A)(2, 3, 4)julia> size(A, 2)3
source
Base.axesMethod
axes(A)

Return the tuple of valid indices for arrayA.

See also:size,keys,eachindex.

Examples

julia> A = fill(1, (5,6,7));julia> axes(A)(Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))
source
Base.axesMethod
axes(A, d)

Return the valid range of indices for arrayA along dimensiond.

See alsosize, and the manual chapter onarrays with custom indices.

Examples

julia> A = fill(1, (5,6,7));julia> axes(A, 2)Base.OneTo(6)julia> axes(A, 4) == 1:1  # all dimensions d > ndims(A) have size 1true

Usage note

Each of the indices has to be anAbstractUnitRange{<:Integer}, but at the same time can be a type that uses custom indices. So, for example, if you need a subset, use generalized indexing constructs likebegin/end orfirstindex/lastindex:

ix = axes(v, 1)ix[2:end]          # will work for eg Vector, but may fail in generalix[(begin+1):end]  # works for generalized indexes
source
Base.lengthMethod
length(A::AbstractArray)

Return the number of elements in the array, defaults toprod(size(A)).

Examples

julia> length([1, 2, 3, 4])4julia> length([1 2; 3 4])4
source
Base.keysMethod
keys(a::AbstractArray)

Return an efficient array describing all valid indices fora arranged in the shape ofa itself.

The keys of 1-dimensional arrays (vectors) are integers, whereas all other N-dimensional arrays useCartesianIndex to describe their locations. Often the special array typesLinearIndices andCartesianIndices are used to efficiently represent these arrays of integers andCartesianIndexes, respectively.

Note that thekeys of an array might not be the most efficient index type; for maximum performance useeachindex instead.

Examples

julia> keys([4, 5, 6])3-element LinearIndices{1, Tuple{Base.OneTo{Int64}}}: 1 2 3julia> keys([4 5; 6 7])CartesianIndices((2, 2))
source
Base.eachindexFunction
eachindex(A...)eachindex(::IndexStyle, A::AbstractArray...)

Create an iterable object for visiting each index of anAbstractArrayA in an efficient manner. For array types that have opted into fast linear indexing (likeArray), this is simply the range1:length(A) if they use 1-based indexing. For array types that have not opted into fast linear indexing, a specialized Cartesian range is typically returned to efficiently index into the array with indices specified for every dimension.

In generaleachindex accepts arbitrary iterables, including strings and dictionaries, and returns an iterator object supporting arbitrary index types (e.g. unevenly spaced or non-integer indices).

IfA isAbstractArray it is possible to explicitly specify the style of the indices that should be returned byeachindex by passing a value havingIndexStyle type as its first argument (typicallyIndexLinear() if linear indices are required orIndexCartesian() if Cartesian range is wanted).

If you supply more than oneAbstractArray argument,eachindex will create an iterable object that is fast for all arguments (typically aUnitRange if all inputs have fast linear indexing, aCartesianIndices otherwise). If the arrays have different sizes and/or dimensionalities, aDimensionMismatch exception will be thrown.

See alsopairs(A) to iterate over indices and values together, andaxes(A, 2) for valid indices along one dimension.

Examples

julia> A = [10 20; 30 40];julia> for i in eachindex(A) # linear indexing           println("A[", i, "] == ", A[i])       endA[1] == 10A[2] == 30A[3] == 20A[4] == 40julia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing           println(i)       endCartesianIndex(1, 1)CartesianIndex(2, 1)
source
Base.IndexStyleType
IndexStyle(A)IndexStyle(typeof(A))

IndexStyle specifies the "native indexing style" for arrayA. When you define a newAbstractArray type, you can choose to implement either linear indexing (withIndexLinear) or cartesian indexing. If you decide to only implement linear indexing, then you must set this trait for your array type:

Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()

The default isIndexCartesian().

Julia's internal indexing machinery will automatically (and invisibly) recompute all indexing operations into the preferred style. This allows users to access elements of your array using any indexing style, even when explicit methods have not been provided.

If you define both styles of indexing for yourAbstractArray, this trait can be used to select the most performant indexing style. Some methods check this trait on their inputs, and dispatch to different algorithms depending on the most efficient access pattern. In particular,eachindex creates an iterator whose type depends on the setting of this trait.

source
Base.IndexLinearType
IndexLinear()

Subtype ofIndexStyle used to describe arrays which are optimally indexed by one linear index.

A linear indexing style uses one integer index to describe the position in the array (even if it's a multidimensional array) and column-major ordering is used to efficiently access the elements. This means that requestingeachindex from an array that isIndexLinear will return a simple one-dimensional range, even if it is multidimensional.

A custom array that reports itsIndexStyle asIndexLinear only needs to implement indexing (and indexed assignment) with a singleInt index; all other indexing expressions — including multidimensional accesses — will be recomputed to the linear index. For example, ifA were a2×3 custom matrix with linear indexing, and we referencedA[1, 3], this would be recomputed to the equivalent linear index and callA[5] since1 + 2*(3 - 1) = 5.

See alsoIndexCartesian.

source
Base.IndexCartesianType
IndexCartesian()

Subtype ofIndexStyle used to describe arrays which are optimally indexed by a Cartesian index. This is the default for new customAbstractArray subtypes.

A Cartesian indexing style uses multiple integer indices to describe the position in a multidimensional array, with exactly one index per dimension. This means that requestingeachindex from an array that isIndexCartesian will return a range ofCartesianIndices.

AN-dimensional custom array that reports itsIndexStyle asIndexCartesian needs to implement indexing (and indexed assignment) with exactlyNInt indices; all other indexing expressions — including linear indexing — will be recomputed to the equivalent Cartesian location. For example, ifA were a2×3 custom matrix with cartesian indexing, and we referencedA[5], this would be recomputed to the equivalent Cartesian index and callA[1, 3] since5 = 1 + 2*(3 - 1).

It is significantly more expensive to compute Cartesian indices from a linear index than it is to go the other way. The former operation requires division — a very costly operation — whereas the latter only uses multiplication and addition and is essentially free. This asymmetry means it is far more costly to use linear indexing with anIndexCartesian array than it is to use Cartesian indexing with anIndexLinear array.

See alsoIndexLinear.

source
Base.conj!Function
conj!(A)

Transform an array to its complex conjugate in-place.

See alsoconj.

Examples

julia> A = [1+im 2-im; 2+2im 3+im]2×2 Matrix{Complex{Int64}}: 1+1im  2-1im 2+2im  3+1imjulia> conj!(A);julia> A2×2 Matrix{Complex{Int64}}: 1-1im  2+1im 2-2im  3-1im
source
Base.strideFunction
stride(A, k::Integer)

Return the distance in memory (in number of elements) between adjacent elements in dimensionk.

See also:strides.

Examples

julia> A = fill(1, (3,4,5));julia> stride(A,2)3julia> stride(A,3)12
source
Base.stridesFunction
strides(A)

Return a tuple of the memory strides in each dimension.

See also:stride.

Examples

julia> A = fill(1, (3,4,5));julia> strides(A)(1, 3, 12)
source

Broadcast and vectorization

See also thedot syntax for vectorizing functions; for example,f.(args...) implicitly callsbroadcast(f, args...). Rather than relying on "vectorized" methods of functions likesin to operate on arrays, you should usesin.(a) to vectorize viabroadcast.

Base.Broadcast.broadcastFunction
broadcast(f, As...)

Broadcast the functionf over the arrays, tuples, collections,Refs and/or scalarsAs.

Broadcasting applies the functionf over the elements of the container arguments and the scalars themselves inAs. Singleton and missing dimensions are expanded to match the extents of the other arguments by virtually repeating the value. By default, only a limited number of types are considered scalars, includingNumbers,Strings,Symbols,Types,Functions and some common singletons likemissing andnothing. All other arguments are iterated over or indexed into elementwise.

The resulting container type is established by the following rules:

  • If all the arguments are scalars or zero-dimensional arrays, it returns an unwrapped scalar.
  • If at least one argument is a tuple and all others are scalars or zero-dimensional arrays, it returns a tuple.
  • All other combinations of arguments default to returning anArray, but custom container types can define their own implementation and promotion-like rules to customize the result when they appear as arguments.

A special syntax exists for broadcasting:f.(args...) is equivalent tobroadcast(f, args...), and nestedf.(g.(args...)) calls are fused into a single broadcast loop.

Examples

julia> A = [1, 2, 3, 4, 5]5-element Vector{Int64}: 1 2 3 4 5julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]5×2 Matrix{Int64}: 1   2 3   4 5   6 7   8 9  10julia> broadcast(+, A, B)5×2 Matrix{Int64}:  2   3  5   6  8   9 11  12 14  15julia> parse.(Int, ["1", "2"])2-element Vector{Int64}: 1 2julia> abs.((1, -2))(1, 2)julia> broadcast(+, 1.0, (0, -2.0))(1.0, -1.0)julia> (+).([[0,2], [1,3]], Ref{Vector{Int}}([1,-1]))2-element Vector{Vector{Int64}}: [1, 1] [2, 2]julia> string.(("one","two","three","four"), ": ", 1:4)4-element Vector{String}: "one: 1" "two: 2" "three: 3" "four: 4"
source
Base.Broadcast.broadcast!Function
broadcast!(f, dest, As...)

Likebroadcast, but store the result ofbroadcast(f, As...) in thedest array. Note thatdest is only used to store the result, and does not supply arguments tof unless it is also listed in theAs, as inbroadcast!(f, A, A, B) to performA[:] = broadcast(f, A, B).

Examples

julia> A = [1.0; 0.0]; B = [0.0; 0.0];julia> broadcast!(+, B, A, (0, -2.0));julia> B2-element Vector{Float64}:  1.0 -2.0julia> A2-element Vector{Float64}: 1.0 0.0julia> broadcast!(+, A, A, (0, -2.0));julia> A2-element Vector{Float64}:  1.0 -2.0
source
Base.Broadcast.@__dot__Macro
@. expr

Convert every function call or operator inexpr into a "dot call" (e.g. convertf(x) tof.(x)), and convert every assignment inexpr to a "dot assignment" (e.g. convert+= to.+=).

If you want toavoid adding dots for selected function calls inexpr, splice those function calls in with$. For example,@. sqrt(abs($sort(x))) is equivalent tosqrt.(abs.(sort(x))) (no dot forsort).

(@. is equivalent to a call to@__dot__.)

Examples

julia> x = 1.0:3.0; y = similar(x);julia> @. y = x + 3 * sin(x)3-element Vector{Float64}: 3.5244129544236893 4.727892280477045 3.4233600241796016
source

For specializing broadcast on custom types, see

Base.Broadcast.BroadcastStyleType

BroadcastStyle is an abstract type and trait-function used to determine behavior of objects under broadcasting.BroadcastStyle(typeof(x)) returns the style associated withx. To customize the broadcasting behavior of a type, one can declare a style by defining a type/method pair

struct MyContainerStyle <: BroadcastStyle endBase.BroadcastStyle(::Type{<:MyContainer}) = MyContainerStyle()

One then writes method(s) (at leastsimilar) operating onBroadcasted{MyContainerStyle}. There are also several pre-defined subtypes ofBroadcastStyle that you may be able to leverage; see theInterfaces chapter for more information.

source
Base.Broadcast.AbstractArrayStyleType

Broadcast.AbstractArrayStyle{N} <: BroadcastStyle is the abstract supertype for any style associated with anAbstractArray type. TheN parameter is the dimensionality, which can be handy for AbstractArray types that only support specific dimensionalities:

struct SparseMatrixStyle <: Broadcast.AbstractArrayStyle{2} endBase.BroadcastStyle(::Type{<:SparseMatrixCSC}) = SparseMatrixStyle()

ForAbstractArray types that support arbitrary dimensionality,N can be set toAny:

struct MyArrayStyle <: Broadcast.AbstractArrayStyle{Any} endBase.BroadcastStyle(::Type{<:MyArray}) = MyArrayStyle()

In cases where you want to be able to mix multipleAbstractArrayStyles and keep track of dimensionality, your style needs to support aVal constructor:

struct MyArrayStyleDim{N} <: Broadcast.AbstractArrayStyle{N} end(::Type{<:MyArrayStyleDim})(::Val{N}) where N = MyArrayStyleDim{N}()

Note that if two or moreAbstractArrayStyle subtypes conflict, broadcasting machinery will fall back to producingArrays. If this is undesirable, you may need to define binaryBroadcastStyle rules to control the output type.

See alsoBroadcast.DefaultArrayStyle.

source
Base.Broadcast.ArrayStyleType

Broadcast.ArrayStyle{MyArrayType}() is aBroadcastStyle indicating that an object behaves as an array for broadcasting. It presents a simple way to constructBroadcast.AbstractArrayStyles for specificAbstractArray container types. Broadcast styles created this way lose track of dimensionality; if keeping track is important for your type, you should create your own customBroadcast.AbstractArrayStyle.

source
Base.Broadcast.DefaultArrayStyleType

Broadcast.DefaultArrayStyle{N}() is aBroadcastStyle indicating that an object behaves as anN-dimensional array for broadcasting. Specifically,DefaultArrayStyle is used for anyAbstractArray type that hasn't defined a specialized style, and in the absence of overrides from otherbroadcast arguments the resulting output type isArray. When there are multiple inputs tobroadcast,DefaultArrayStyle "loses" to any otherBroadcast.ArrayStyle.

source
Base.Broadcast.broadcastableFunction
Broadcast.broadcastable(x)

Return eitherx or an object likex such that it supportsaxes, indexing, and its type supportsndims.

Ifx supports iteration, the returned value should have the sameaxes and indexing behaviors ascollect(x).

Ifx is not anAbstractArray but it supportsaxes, indexing, and its type supportsndims, thenbroadcastable(::typeof(x)) may be implemented to just return itself. Further, ifx defines its ownBroadcastStyle, then it must define itsbroadcastable method to return itself for the custom style to have any effect.

Examples

julia> Broadcast.broadcastable([1,2,3]) # like `identity` since arrays already support axes and indexing3-element Vector{Int64}: 1 2 3julia> Broadcast.broadcastable(Int) # Types don't support axes, indexing, or iteration but are commonly used as scalarsBase.RefValue{Type{Int64}}(Int64)julia> Broadcast.broadcastable("hello") # Strings break convention of matching iteration and act like a scalar insteadBase.RefValue{String}("hello")
source
Base.Broadcast.combine_axesFunction
combine_axes(As...) -> Tuple

Determine the result axes for broadcasting across all values inAs.

julia> Broadcast.combine_axes([1], [1 2; 3 4; 5 6])(Base.OneTo(3), Base.OneTo(2))julia> Broadcast.combine_axes(1, 1, 1)()
source
Base.Broadcast.combine_stylesFunction
combine_styles(cs...) -> BroadcastStyle

Decides whichBroadcastStyle to use for any number of value arguments. UsesBroadcastStyle to get the style for each argument, and usesresult_style to combine styles.

Examples

julia> Broadcast.combine_styles([1], [1 2; 3 4])Base.Broadcast.DefaultArrayStyle{2}()
source
Base.Broadcast.result_styleFunction
result_style(s1::BroadcastStyle[, s2::BroadcastStyle]) -> BroadcastStyle

Takes one or twoBroadcastStyles and combines them usingBroadcastStyle to determine a commonBroadcastStyle.

Examples

julia> Broadcast.result_style(Broadcast.DefaultArrayStyle{0}(), Broadcast.DefaultArrayStyle{3}())Base.Broadcast.DefaultArrayStyle{3}()julia> Broadcast.result_style(Broadcast.Unknown(), Broadcast.DefaultArrayStyle{1}())Base.Broadcast.DefaultArrayStyle{1}()
source

Indexing and assignment

Base.getindexMethod
getindex(A, inds...)

Return a subset of arrayA as selected by the indicesinds.

Each index may be anysupported index type, such as anInteger,CartesianIndex,range, orarray of supported indices. A: may be used to select all elements along a specific dimension, and a boolean array (e.g. anArray{Bool} or aBitArray) may be used to filter for elements where the corresponding index istrue.

Wheninds selects multiple elements, this function returns a newly allocated array. To index multiple elements without making a copy, useview instead.

See the manual section onarray indexing for details.

Examples

julia> A = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> getindex(A, 1)1julia> getindex(A, [2, 1])2-element Vector{Int64}: 3 1julia> getindex(A, 2:4)3-element Vector{Int64}: 3 2 4julia> getindex(A, 2, 1)3julia> getindex(A, CartesianIndex(2, 1))3julia> getindex(A, :, 2)2-element Vector{Int64}: 2 4julia> getindex(A, 2, :)2-element Vector{Int64}: 3 4julia> getindex(A, A .> 2)2-element Vector{Int64}: 3 4
source
Base.setindex!Method
setindex!(A, X, inds...)A[inds...] = X

Store values from arrayX within some subset ofA as specified byinds. The syntaxA[inds...] = X is equivalent to(setindex!(A, X, inds...); X).

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

Examples

julia> A = zeros(2,2);julia> setindex!(A, [10, 20], [1, 2]);julia> A[[3, 4]] = [30, 40];julia> A2×2 Matrix{Float64}: 10.0  30.0 20.0  40.0
source
Base.nextindFunction
nextind(A, i)

Return the index afteri inA. The returned index is often equivalent toi + 1 for an integeri. This function can be useful for generic code.

Warning

The returned index might be out of bounds. Consider usingcheckbounds.

See also:prevind.

Examples

julia> x = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> nextind(x, 1) # valid result2julia> nextind(x, 4) # invalid result5julia> nextind(x, CartesianIndex(1, 1)) # valid resultCartesianIndex(2, 1)julia> nextind(x, CartesianIndex(2, 2)) # invalid resultCartesianIndex(1, 3)
source
Base.previndFunction
prevind(A, i)

Return the index beforei inA. The returned index is often equivalent toi - 1 for an integeri. This function can be useful for generic code.

Warning

The returned index might be out of bounds. Consider usingcheckbounds.

See also:nextind.

Examples

julia> x = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> prevind(x, 4) # valid result3julia> prevind(x, 1) # invalid result0julia> prevind(x, CartesianIndex(2, 2)) # valid resultCartesianIndex(1, 2)julia> prevind(x, CartesianIndex(1, 1)) # invalid resultCartesianIndex(2, 0)
source
Base.copyto!Method
copyto!(dest, Rdest::CartesianIndices, src, Rsrc::CartesianIndices) -> dest

Copy the block ofsrc in the range ofRsrc to the block ofdest in the range ofRdest. The sizes of the two regions must match.

Examples

julia> A = zeros(5, 5);julia> B = [1 2; 3 4];julia> Ainds = CartesianIndices((2:3, 2:3));julia> Binds = CartesianIndices(B);julia> copyto!(A, Ainds, B, Binds)5×5 Matrix{Float64}: 0.0  0.0  0.0  0.0  0.0 0.0  1.0  2.0  0.0  0.0 0.0  3.0  4.0  0.0  0.0 0.0  0.0  0.0  0.0  0.0 0.0  0.0  0.0  0.0  0.0
source
Base.copy!Function
copy!(dst, src) -> dst

In-placecopy ofsrc intodst, discarding any pre-existing elements indst. Ifdst andsrc are of the same type,dst == src should hold after the call. Ifdst andsrc are multidimensional arrays, they must have equalaxes.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

See alsocopyto!.

Julia 1.1

This method requires at least Julia 1.1. In Julia 1.0 this method is available from theFuture standard library asFuture.copy!.

source
Base.isassignedFunction
isassigned(array, i) -> Bool

Test whether the given array has a value associated with indexi. Returnfalse if the index is out of bounds, or has an undefined reference.

Examples

julia> isassigned(rand(3, 3), 5)truejulia> isassigned(rand(3, 3), 3 * 3 + 1)falsejulia> mutable struct Foo endjulia> v = similar(rand(3), Foo)3-element Vector{Foo}: #undef #undef #undefjulia> isassigned(v, 1)false
source
Base.ColonType
Colon()

Colons (:) are used to signify indexing entire objects or dimensions at once.

Very few operations are defined on Colons directly; instead they are converted byto_indices to an internal vector type (Base.Slice) to represent the collection of indices they span before being used.

The singleton instance ofColon is also a function used to construct ranges; see:.

source
Base.IteratorsMD.CartesianIndexType
CartesianIndex(i, j, k...)   -> ICartesianIndex((i, j, k...)) -> I

Create a multidimensional indexI, which can be used for indexing a multidimensional arrayA. In particular,A[I] is equivalent toA[i,j,k...]. One can freely mix integer andCartesianIndex indices; for example,A[Ipre, i, Ipost] (whereIpre andIpost areCartesianIndex indices andi is anInt) can be a useful expression when writing algorithms that work along a single dimension of an array of arbitrary dimensionality.

ACartesianIndex is sometimes produced byeachindex, and always when iterating with an explicitCartesianIndices.

AnI::CartesianIndex is treated as a "scalar" (not a container) forbroadcast. In order to iterate over the components of aCartesianIndex, convert it to a tuple withTuple(I).

Examples

julia> A = reshape(Vector(1:16), (2, 2, 2, 2))2×2×2×2 Array{Int64, 4}:[:, :, 1, 1] = 1  3 2  4[:, :, 2, 1] = 5  7 6  8[:, :, 1, 2] =  9  11 10  12[:, :, 2, 2] = 13  15 14  16julia> A[CartesianIndex((1, 1, 1, 1))]1julia> A[CartesianIndex((1, 1, 1, 2))]9julia> A[CartesianIndex((1, 1, 2, 1))]5
Julia 1.10

Using aCartesianIndex as a "scalar" forbroadcast requires Julia 1.10; in previous releases, useRef(I).

source
Base.IteratorsMD.CartesianIndicesType
CartesianIndices(sz::Dims) -> RCartesianIndices((istart:[istep:]istop, jstart:[jstep:]jstop, ...)) -> R

Define a regionR spanning a multidimensional rectangular range of integer indices. These are most commonly encountered in the context of iteration, wherefor I in R ... end will returnCartesianIndex indicesI equivalent to the nested loops

for j = jstart:jstep:jstop    for i = istart:istep:istop        ...    endend

Consequently these can be useful for writing algorithms that work in arbitrary dimensions.

CartesianIndices(A::AbstractArray) -> R

As a convenience, constructing aCartesianIndices from an array makes a range of its indices.

Julia 1.6

The step range methodCartesianIndices((istart:istep:istop, jstart:[jstep:]jstop, ...)) requires at least Julia 1.6.

Examples

julia> foreach(println, CartesianIndices((2, 2, 2)))CartesianIndex(1, 1, 1)CartesianIndex(2, 1, 1)CartesianIndex(1, 2, 1)CartesianIndex(2, 2, 1)CartesianIndex(1, 1, 2)CartesianIndex(2, 1, 2)CartesianIndex(1, 2, 2)CartesianIndex(2, 2, 2)julia> CartesianIndices(fill(1, (2,3)))CartesianIndices((2, 3))

Conversion between linear and cartesian indices

Linear index to cartesian index conversion exploits the fact that aCartesianIndices is anAbstractArray and can be indexed linearly:

julia> cartesian = CartesianIndices((1:3, 1:2))CartesianIndices((1:3, 1:2))julia> cartesian[4]CartesianIndex(1, 2)julia> cartesian = CartesianIndices((1:2:5, 1:2))CartesianIndices((1:2:5, 1:2))julia> cartesian[2, 2]CartesianIndex(3, 2)

Broadcasting

CartesianIndices support broadcasting arithmetic (+ and -) with aCartesianIndex.

Julia 1.1

Broadcasting of CartesianIndices requires at least Julia 1.1.

julia> CIs = CartesianIndices((2:3, 5:6))CartesianIndices((2:3, 5:6))julia> CI = CartesianIndex(3, 4)CartesianIndex(3, 4)julia> CIs .+ CICartesianIndices((5:6, 9:10))

For cartesian to linear index conversion, seeLinearIndices.

source
Base.DimsType
Dims{N}

AnNTuple ofNInts used to represent the dimensions of anAbstractArray.

source
Base.LinearIndicesType
LinearIndices(A::AbstractArray)

Return aLinearIndices array with the same shape andaxes asA, holding the linear index of each entry inA. Indexing this array with cartesian indices allows mapping them to linear indices.

For arrays with conventional indexing (indices start at 1), or any multidimensional array, linear indices range from 1 tolength(A). However, forAbstractVectors linear indices areaxes(A, 1), and therefore do not start at 1 for vectors with unconventional indexing.

Calling this function is the "safe" way to write algorithms that exploit linear indexing.

Examples

julia> A = fill(1, (5,6,7));julia> b = LinearIndices(A);julia> extrema(b)(1, 210)
LinearIndices(inds::CartesianIndices) -> RLinearIndices(sz::Dims) -> RLinearIndices((istart:istop, jstart:jstop, ...)) -> R

Return aLinearIndices array with the specified shape oraxes.

Examples

The main purpose of this constructor is intuitive conversion from cartesian to linear indexing:

julia> linear = LinearIndices((1:3, 1:2))3×2 LinearIndices{2, Tuple{UnitRange{Int64}, UnitRange{Int64}}}: 1  4 2  5 3  6julia> linear[1,2]4
source
Base.to_indicesFunction
to_indices(A, I::Tuple)

Convert the tupleI to a tuple of indices for use in indexing into arrayA.

The returned tuple must only contain eitherInts orAbstractArrays of scalar indices that are supported by arrayA. It will error upon encountering a novel index type that it does not know how to process.

For simple index types, it defers to the unexportedBase.to_index(A, i) to process each indexi. While this internal function is not intended to be called directly,Base.to_index may be extended by custom array or index types to provide custom indexing behaviors.

More complicated index types may require more context about the dimension into which they index. To support those cases,to_indices(A, I) callsto_indices(A, axes(A), I), which then recursively walks through both the given tuple of indices and the dimensional indices ofA in tandem. As such, not all index types are guaranteed to propagate toBase.to_index.

Examples

julia> A = zeros(1,2,3,4);julia> to_indices(A, (1,1,2,2))(1, 1, 2, 2)julia> to_indices(A, (1,1,2,20)) # no bounds checking(1, 1, 2, 20)julia> to_indices(A, (CartesianIndex((1,)), 2, CartesianIndex((3,4)))) # exotic index(1, 2, 3, 4)julia> to_indices(A, ([1,1], 1:2, 3, 4))([1, 1], 1:2, 3, 4)julia> to_indices(A, (1,2)) # no shape checking(1, 2)
source
Base.checkboundsFunction
checkbounds(Bool, A, I...)

Returntrue if the specified indicesI are in bounds for the given arrayA. Subtypes ofAbstractArray should specialize this method if they need to provide custom bounds checking behaviors; however, in many cases one can rely onA's indices andcheckindex.

See alsocheckindex.

Examples

julia> A = rand(3, 3);julia> checkbounds(Bool, A, 2)truejulia> checkbounds(Bool, A, 3, 4)falsejulia> checkbounds(Bool, A, 1:3)truejulia> checkbounds(Bool, A, 1:3, 2:4)false
source
checkbounds(A, I...)

Throw an error if the specified indicesI are not in bounds for the given arrayA.

source
Base.checkindexFunction
checkindex(Bool, inds::AbstractUnitRange, index)

Returntrue if the givenindex is within the bounds ofinds. Custom types that would like to behave as indices for all arrays can extend this method in order to provide a specialized bounds checking implementation.

See alsocheckbounds.

Examples

julia> checkindex(Bool, 1:20, 8)truejulia> checkindex(Bool, 1:20, 21)false
source
Base.elsizeFunction
elsize(type)

Compute the memory stride in bytes between consecutive elements ofeltype stored inside the giventype, if the array elements are stored densely with a uniform linear stride.

Examples

julia> Base.elsize(rand(Float32, 10))4
source

Views (SubArrays and other view types)

A “view” is a data structure that acts like an array (it is a subtype ofAbstractArray), but the underlying data is actually part of another array.

For example, ifx is an array andv = @view x[1:10], thenv acts like a 10-element array, but its data is actually accessing the first 10 elements ofx. Writing to a view, e.g.v[3] = 2, writes directly to the underlying arrayx (in this case modifyingx[3]).

Slicing operations likex[1:10] create a copy by default in Julia.@view x[1:10] changes it to make a view. The@views macro can be used on a whole block of code (e.g.@views function foo() .... end or@views begin ... end) to change all the slicing operations in that block to use views. Sometimes making a copy of the data is faster and sometimes using a view is faster, as described in theperformance tips.

Base.viewFunction
view(A, inds...)

Likegetindex, but returns a lightweight array that lazily references (or is effectively aview into) the parent arrayA at the given index or indicesinds instead of eagerly extracting elements or constructing a copied subset. Callinggetindex orsetindex! on the returned value (often aSubArray) computes the indices to access or modify the parent array on the fly. The behavior is undefined if the shape of the parent array is changed afterview is called because there is no bound check for the parent array; e.g., it may cause a segmentation fault.

Some immutable parent arrays (like ranges) may choose to simply recompute a new array in some circumstances instead of returning aSubArray if doing so is efficient and provides compatible semantics.

Julia 1.6

In Julia 1.6 or later,view can be called on anAbstractString, returning aSubString.

Examples

julia> A = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> b = view(A, :, 1)2-element view(::Matrix{Int64}, :, 1) with eltype Int64: 1 3julia> fill!(b, 0)2-element view(::Matrix{Int64}, :, 1) with eltype Int64: 0 0julia> A # Note A has changed even though we modified b2×2 Matrix{Int64}: 0  2 0  4julia> view(2:5, 2:3) # returns a range as type is immutable3:4
source
Base.@viewMacro
@view A[inds...]

Transform the indexing expressionA[inds...] into the equivalentview call.

This can only be applied directly to a single indexing expression and is particularly helpful for expressions that include the specialbegin orend indexing syntaxes likeA[begin, 2:end-1] (as those are not supported by the normalview function).

Note that@view cannot be used as the target of a regular assignment (e.g.,@view(A[1, 2:end]) = ...), nor would the un-decoratedindexed assignment (A[1, 2:end] = ...) or broadcasted indexed assignment (A[1, 2:end] .= ...) make a copy. It can be useful, however, forupdating broadcasted assignments like@view(A[1, 2:end]) .+= 1 because this is a simple syntax for@view(A[1, 2:end]) .= @view(A[1, 2:end]) + 1, and the indexing expression on the right-hand side would otherwise make a copy without the@view.

See also@views to switch an entire block of code to use views for non-scalar indexing.

Julia 1.5

Usingbegin in an indexing expression to refer to the first index requires at least Julia 1.5.

Examples

julia> A = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> b = @view A[:, 1]2-element view(::Matrix{Int64}, :, 1) with eltype Int64: 1 3julia> fill!(b, 0)2-element view(::Matrix{Int64}, :, 1) with eltype Int64: 0 0julia> A2×2 Matrix{Int64}: 0  2 0  4
source
Base.@viewsMacro
@views expression

Convert every array-slicing operation in the given expression (which may be abegin/end block, loop, function, etc.) to return a view. Scalar indices, non-array types, and explicitgetindex calls (as opposed toarray[...]) are unaffected.

Similarly,@views converts string slices intoSubString views.

Note

The@views macro only affectsarray[...] expressions that appear explicitly in the givenexpression, not array slicing that occurs in functions called by that code.

Julia 1.5

Usingbegin in an indexing expression to refer to the first index was implemented in Julia 1.4, but was only supported by@views starting in Julia 1.5.

Examples

julia> A = zeros(3, 3);julia> @views for row in 1:3           b = A[row, :] # b is a view, not a copy           b .= row      # assign every element to the row index       endjulia> A3×3 Matrix{Float64}: 1.0  1.0  1.0 2.0  2.0  2.0 3.0  3.0  3.0
source
Base.parentFunction
parent(A)

Return the underlying parent object of the view. This parent of objects of typesSubArray,SubString,ReshapedArray orLinearAlgebra.Transpose is what was passed as an argument toview,reshape,transpose, etc. during object creation. If the input is not a wrapped object, return the input itself. If the input is wrapped multiple times, only the outermost wrapper will be removed.

Examples

julia> A = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> V = view(A, 1:2, :)2×2 view(::Matrix{Int64}, 1:2, :) with eltype Int64: 1  2 3  4julia> parent(V)2×2 Matrix{Int64}: 1  2 3  4
source
Base.parentindicesFunction
parentindices(A)

Return the indices in theparent which correspond to the viewA.

Examples

julia> A = [1 2; 3 4];julia> V = view(A, 1, :)2-element view(::Matrix{Int64}, 1, :) with eltype Int64: 1 2julia> parentindices(V)(1, Base.Slice(Base.OneTo(2)))
source
Base.selectdimFunction
selectdim(A, d::Integer, i)

Return a view of all the data ofA where the index for dimensiond equalsi.

Equivalent toview(A,:,:,...,i,:,:,...) wherei is in positiond.

See also:eachslice.

Examples

julia> A = [1 2 3 4; 5 6 7 8]2×4 Matrix{Int64}: 1  2  3  4 5  6  7  8julia> selectdim(A, 2, 3)2-element view(::Matrix{Int64}, :, 3) with eltype Int64: 3 7julia> selectdim(A, 2, 3:4)2×2 view(::Matrix{Int64}, :, 3:4) with eltype Int64: 3  4 7  8
source
Base.reinterpretFunction
reinterpret(::Type{Out}, x::In)

Change the type-interpretation of the binary data in the isbits valuex to that of the isbits typeOut. The size (ignoring padding) ofOut has to be the same as that of the type ofx. For example,reinterpret(Float32, UInt32(7)) interprets the 4 bytes corresponding toUInt32(7) as aFloat32. Note thatreinterpret(In, reinterpret(Out, x)) === x

julia> reinterpret(Float32, UInt32(7))1.0f-44julia> reinterpret(NTuple{2, UInt8}, 0x1234)(0x34, 0x12)julia> reinterpret(UInt16, (0x34, 0x12))0x1234julia> reinterpret(Tuple{UInt16, UInt8}, (0x01, 0x0203))(0x0301, 0x02)
Note

The treatment of padding differs from reinterpret(::DataType, ::AbstractArray).

Warning

Use caution if some combinations of bits inOut are not considered valid and would otherwise be prevented by the type's constructors and methods. Unexpected behavior may result without additional validation.

source
reinterpret(T::DataType, A::AbstractArray)

Construct a view of the array with the same binary data as the given array, but withT as element type.

This function also works on "lazy" array whose elements are not computed until they are explicitly retrieved. For instance,reinterpret on the range1:6 works similarly as on the dense vectorcollect(1:6):

julia> reinterpret(Float32, UInt32[1 2 3 4 5])1×5 reinterpret(Float32, ::Matrix{UInt32}): 1.0f-45  3.0f-45  4.0f-45  6.0f-45  7.0f-45julia> reinterpret(Complex{Int}, 1:6)3-element reinterpret(Complex{Int64}, ::UnitRange{Int64}): 1 + 2im 3 + 4im 5 + 6im

If the location of padding bits does not line up betweenT andeltype(A), the resulting array will be read-only or write-only, to prevent invalid bits from being written to or read from, respectively.

julia> a = reinterpret(Tuple{UInt8, UInt32}, UInt32[1, 2])1-element reinterpret(Tuple{UInt8, UInt32}, ::Vector{UInt32}): (0x01, 0x00000002)julia> a[1] = 3ERROR: Padding of type Tuple{UInt8, UInt32} is not compatible with type UInt32.julia> b = reinterpret(UInt32, Tuple{UInt8, UInt32}[(0x01, 0x00000002)]); # showing will errorjulia> b[1]ERROR: Padding of type UInt32 is not compatible with type Tuple{UInt8, UInt32}.
source
reinterpret(reshape, T, A::AbstractArray{S}) -> B

Change the type-interpretation ofA while consuming or adding a "channel dimension."

Ifsizeof(T) = n*sizeof(S) forn>1,A's first dimension must be of sizen andB lacksA's first dimension. Conversely, ifsizeof(S) = n*sizeof(T) forn>1,B gets a new first dimension of sizen. The dimensionality is unchanged ifsizeof(T) == sizeof(S).

Julia 1.6

This method requires at least Julia 1.6.

Examples

julia> A = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> reinterpret(reshape, Complex{Int}, A)    # the result is a vector2-element reinterpret(reshape, Complex{Int64}, ::Matrix{Int64}) with eltype Complex{Int64}: 1 + 3im 2 + 4imjulia> a = [(1,2,3), (4,5,6)]2-element Vector{Tuple{Int64, Int64, Int64}}: (1, 2, 3) (4, 5, 6)julia> reinterpret(reshape, Int, a)             # the result is a matrix3×2 reinterpret(reshape, Int64, ::Vector{Tuple{Int64, Int64, Int64}}) with eltype Int64: 1  4 2  5 3  6
source
Base.reshapeFunction
reshape(A, dims...) -> AbstractArrayreshape(A, dims) -> AbstractArray

Return an array with the same data asA, but with different dimension sizes or number of dimensions. The two arrays share the same underlying data, so that the result is mutable if and only ifA is mutable, and setting elements of one alters the values of the other.

The new dimensions may be specified either as a list of arguments or as a shape tuple. At most one dimension may be specified with a:, in which case its length is computed such that its product with all the specified dimensions is equal to the length of the original arrayA. The total number of elements must not change.

Examples

julia> A = Vector(1:16)16-element Vector{Int64}:  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16julia> reshape(A, (4, 4))4×4 Matrix{Int64}: 1  5   9  13 2  6  10  14 3  7  11  15 4  8  12  16julia> reshape(A, 2, :)2×8 Matrix{Int64}: 1  3  5  7   9  11  13  15 2  4  6  8  10  12  14  16julia> reshape(1:6, 2, 3)2×3 reshape(::UnitRange{Int64}, 2, 3) with eltype Int64: 1  3  5 2  4  6
source
Base.dropdimsFunction
dropdims(A; dims)

Return an array with the same data asA, but with the dimensions specified bydims removed.size(A,d) must equal 1 for everyd indims, and repeated dimensions or numbers outside1:ndims(A) are forbidden.

The result shares the same underlying data asA, such that the result is mutable if and only ifA is mutable, and setting elements of one alters the values of the other.

See also:reshape,vec.

Examples

julia> a = reshape(Vector(1:4),(2,2,1,1))2×2×1×1 Array{Int64, 4}:[:, :, 1, 1] = 1  3 2  4julia> b = dropdims(a; dims=3)2×2×1 Array{Int64, 3}:[:, :, 1] = 1  3 2  4julia> b[1,1,1] = 5; a2×2×1×1 Array{Int64, 4}:[:, :, 1, 1] = 5  3 2  4
source
Base.vecFunction
vec(a::AbstractArray) -> AbstractVector

Reshape the arraya as a one-dimensional column vector. Returna if it is already anAbstractVector. The resulting array shares the same underlying data asa, so it will only be mutable ifa is mutable, in which case modifying one will also modify the other.

Examples

julia> a = [1 2 3; 4 5 6]2×3 Matrix{Int64}: 1  2  3 4  5  6julia> vec(a)6-element Vector{Int64}: 1 4 2 5 3 6julia> vec(1:3)1:3

See alsoreshape,dropdims.

source
Base.SubArrayType
SubArray{T,N,P,I,L} <: AbstractArray{T,N}

N-dimensional view into a parent array (of typeP) with an element typeT, restricted by a tuple of indices (of typeI).L is true for types that support fast linear indexing, andfalse otherwise.

ConstructSubArrays using theview function.

source

Concatenation and permutation

Base.catFunction
cat(A...; dims)

Concatenate the input arrays along the dimensions specified indims.

Along a dimensiond in dims, the size of the output array issum(size(a,d) for a in A). Along other dimensions, all input arrays should have the same size, which will also be the size of the output array along those dimensions.

Ifdims is a single number, the different arrays are tightly packed along that dimension. Ifdims is an iterable containing several dimensions, the positions along these dimensions are increased simultaneously for each input array, filling with zero elsewhere. This allows one to construct block-diagonal matrices ascat(matrices...; dims=(1,2)), and their higher-dimensional analogues.

The special casedims=1 isvcat, anddims=2 ishcat. See alsohvcat,hvncat,stack,repeat.

The keyword also acceptsVal(dims).

Julia 1.8

For multiple dimensionsdims = Val(::Tuple) was added in Julia 1.8.

Examples

Concatenate two arrays in different dimensions:

julia> a = [1 2 3]1×3 Matrix{Int64}: 1  2  3julia> b = [4 5 6]1×3 Matrix{Int64}: 4  5  6julia> cat(a, b; dims=1)2×3 Matrix{Int64}: 1  2  3 4  5  6julia> cat(a, b; dims=2)1×6 Matrix{Int64}: 1  2  3  4  5  6julia> cat(a, b; dims=(1, 2))2×6 Matrix{Int64}: 1  2  3  0  0  0 0  0  0  4  5  6

Extended Help

Concatenate 3D arrays:

julia> a = ones(2, 2, 3);julia> b = ones(2, 2, 4);julia> c = cat(a, b; dims=3);julia> size(c) == (2, 2, 7)true

Concatenate arrays of different sizes:

julia> cat([1 2; 3 4], [pi, pi], fill(10, 2,3,1); dims=2)  # same as hcat2×6×1 Array{Float64, 3}:[:, :, 1] = 1.0  2.0  3.14159  10.0  10.0  10.0 3.0  4.0  3.14159  10.0  10.0  10.0

Construct a block diagonal matrix:

julia> cat(true, trues(2,2), trues(4)', dims=(1,2))  # block-diagonal4×7 Matrix{Bool}: 1  0  0  0  0  0  0 0  1  1  0  0  0  0 0  1  1  0  0  0  0 0  0  0  1  1  1  1
julia> cat(1, [2], [3;;]; dims=Val(2))1×3 Matrix{Int64}: 1  2  3
Note

cat does not join two strings, you may want to use*.

julia> a = "aaa";julia> b = "bbb";julia> cat(a, b; dims=1)2-element Vector{String}: "aaa" "bbb"julia> cat(a, b; dims=2)1×2 Matrix{String}: "aaa"  "bbb"julia> a * b"aaabbb"
source
Base.vcatFunction
vcat(A...)

Concatenate arrays or numbers vertically. Equivalent tocat(A...; dims=1), and to the syntax[a; b; c].

To concatenate a large vector of arrays,reduce(vcat, A) calls an efficient method whenA isa AbstractVector{<:AbstractVecOrMat}, rather than working pairwise.

See alsohcat,Iterators.flatten,stack.

Examples

julia> v = vcat([1,2], [3,4])4-element Vector{Int64}: 1 2 3 4julia> v == vcat(1, 2, [3,4])  # accepts numberstruejulia> v == [1; 2; [3,4]]  # syntax for the same operationtruejulia> summary(ComplexF64[1; 2; [3,4]])  # syntax for supplying the element type"4-element Vector{ComplexF64}"julia> vcat(range(1, 2, length=3))  # collects lazy ranges3-element Vector{Float64}: 1.0 1.5 2.0julia> two = ([10, 20, 30]', Float64[4 5 6; 7 8 9])  # row vector and a matrix([10 20 30], [4.0 5.0 6.0; 7.0 8.0 9.0])julia> vcat(two...)3×3 Matrix{Float64}: 10.0  20.0  30.0  4.0   5.0   6.0  7.0   8.0   9.0julia> vs = [[1, 2], [3, 4], [5, 6]];julia> reduce(vcat, vs)  # more efficient than vcat(vs...)6-element Vector{Int64}: 1 2 3 4 5 6julia> ans == collect(Iterators.flatten(vs))true
source
Base.hcatFunction
hcat(A...)

Concatenate arrays or numbers horizontally. Equivalent tocat(A...; dims=2), and to the syntax[a b c] or[a;; b;; c].

For a large vector of arrays,reduce(hcat, A) calls an efficient method whenA isa AbstractVector{<:AbstractVecOrMat}. For a vector of vectors, this can also be writtenstack(A).

See alsovcat,hvcat.

Examples

julia> hcat([1,2], [3,4], [5,6])2×3 Matrix{Int64}: 1  3  5 2  4  6julia> hcat(1, 2, [30 40], [5, 6, 7]')  # accepts numbers1×7 Matrix{Int64}: 1  2  30  40  5  6  7julia> ans == [1 2 [30 40] [5, 6, 7]']  # syntax for the same operationtruejulia> Float32[1 2 [30 40] [5, 6, 7]']  # syntax for supplying the eltype1×7 Matrix{Float32}: 1.0  2.0  30.0  40.0  5.0  6.0  7.0julia> ms = [zeros(2,2), [1 2; 3 4], [50 60; 70 80]];julia> reduce(hcat, ms)  # more efficient than hcat(ms...)2×6 Matrix{Float64}: 0.0  0.0  1.0  2.0  50.0  60.0 0.0  0.0  3.0  4.0  70.0  80.0julia> stack(ms) |> summary  # disagrees on a vector of matrices"2×2×3 Array{Float64, 3}"julia> hcat(Int[], Int[], Int[])  # empty vectors, each of size (0,)0×3 Matrix{Int64}julia> hcat([1.1, 9.9], Matrix(undef, 2, 0))  # hcat with empty 2×0 Matrix2×1 Matrix{Any}: 1.1 9.9
source
Base.hvcatFunction
hvcat(blocks_per_row::Union{Tuple{Vararg{Int}}, Int}, values...)

Horizontal and vertical concatenation in one call. This function is called for block matrix syntax. The first argument specifies the number of arguments to concatenate in each block row. If the first argument is a single integern, then all block rows are assumed to haven block columns.

Examples

julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6(1, 2, 3, 4, 5, 6)julia> [a b c; d e f]2×3 Matrix{Int64}: 1  2  3 4  5  6julia> hvcat((3,3), a,b,c,d,e,f)2×3 Matrix{Int64}: 1  2  3 4  5  6julia> [a b; c d; e f]3×2 Matrix{Int64}: 1  2 3  4 5  6julia> hvcat((2,2,2), a,b,c,d,e,f)3×2 Matrix{Int64}: 1  2 3  4 5  6julia> hvcat((2,2,2), a,b,c,d,e,f) == hvcat(2, a,b,c,d,e,f)true
source
Base.hvncatFunction
hvncat(dim::Int, row_first, values...)hvncat(dims::Tuple{Vararg{Int}}, row_first, values...)hvncat(shape::Tuple{Vararg{Tuple}}, row_first, values...)

Horizontal, vertical, and n-dimensional concatenation of manyvalues in one call.

This function is called for block matrix syntax. The first argument either specifies the shape of the concatenation, similar tohvcat, as a tuple of tuples, or the dimensions that specify the key number of elements along each axis, and is used to determine the output dimensions. Thedims form is more performant, and is used by default when the concatenation operation has the same number of elements along each axis (e.g., [a b; c d;;; e f ; g h]). Theshape form is used when the number of elements along each axis is unbalanced (e.g., [a b ; c]). Unbalanced syntax needs additional validation overhead. Thedim form is an optimization for concatenation along just one dimension.row_first indicates howvalues are ordered. The meaning of the first and second elements ofshape are also swapped based onrow_first.

Examples

julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6(1, 2, 3, 4, 5, 6)julia> [a b c;;; d e f]1×3×2 Array{Int64, 3}:[:, :, 1] = 1  2  3[:, :, 2] = 4  5  6julia> hvncat((2,1,3), false, a,b,c,d,e,f)2×1×3 Array{Int64, 3}:[:, :, 1] = 1 2[:, :, 2] = 3 4[:, :, 3] = 5 6julia> [a b;;; c d;;; e f]1×2×3 Array{Int64, 3}:[:, :, 1] = 1  2[:, :, 2] = 3  4[:, :, 3] = 5  6julia> hvncat(((3, 3), (3, 3), (6,)), true, a, b, c, d, e, f)1×3×2 Array{Int64, 3}:[:, :, 1] = 1  2  3[:, :, 2] = 4  5  6

Examples for construction of the arguments

[a b c ; d e f ;;; g h i ; j k l ;;; m n o ; p q r ;;; s t u ; v w x]⇒ dims = (2, 3, 4)[a b ; c ;;; d ;;;;] ___   _     _ 2     1     1 = elements in each row (2, 1, 1) _______     _ 3           1 = elements in each column (3, 1) _____________ 4             = elements in each 3d slice (4,) _____________ 4             = elements in each 4d slice (4,)⇒ shape = ((2, 1, 1), (3, 1), (4,), (4,)) with `row_first` = true
source
Base.stackFunction
stack(iter; [dims])

Combine a collection of arrays (or other iterable objects) of equal size into one larger array, by arranging them along one or more new dimensions.

By default the axes of the elements are placed first, givingsize(result) = (size(first(iter))..., size(iter)...). This has the same order of elements asIterators.flatten(iter).

With keyworddims::Integer, instead theith element ofiter becomes the sliceselectdim(result, dims, i), so thatsize(result, dims) == length(iter). In this casestack reverses the action ofeachslice with the samedims.

The variouscat functions also combine arrays. However, these all extend the arrays' existing (possibly trivial) dimensions, rather than placing the arrays along new dimensions. They also accept arrays as separate arguments, rather than a single collection.

Julia 1.9

This function requires at least Julia 1.9.

Examples

julia> vecs = (1:2, [30, 40], Float32[500, 600]);julia> mat = stack(vecs)2×3 Matrix{Float32}: 1.0  30.0  500.0 2.0  40.0  600.0julia> mat == hcat(vecs...) == reduce(hcat, collect(vecs))truejulia> vec(mat) == vcat(vecs...) == reduce(vcat, collect(vecs))truejulia> stack(zip(1:4, 10:99))  # accepts any iterators of iterators2×4 Matrix{Int64}:  1   2   3   4 10  11  12  13julia> vec(ans) == collect(Iterators.flatten(zip(1:4, 10:99)))truejulia> stack(vecs; dims=1)  # unlike any cat function, 1st axis of vecs[1] is 2nd axis of result3×2 Matrix{Float32}:   1.0    2.0  30.0   40.0 500.0  600.0julia> x = rand(3,4);julia> x == stack(eachcol(x)) == stack(eachrow(x), dims=1)  # inverse of eachslicetrue

Higher-dimensional examples:

julia> A = rand(5, 7, 11);julia> E = eachslice(A, dims=2);  # a vector of matricesjulia> (element = size(first(E)), container = size(E))(element = (5, 11), container = (7,))julia> stack(E) |> size(5, 11, 7)julia> stack(E) == stack(E; dims=3) == cat(E...; dims=3)truejulia> A == stack(E; dims=2)truejulia> M = (fill(10i+j, 2, 3) for i in 1:5, j in 1:7);julia> (element = size(first(M)), container = size(M))(element = (2, 3), container = (5, 7))julia> stack(M) |> size  # keeps all dimensions(2, 3, 5, 7)julia> stack(M; dims=1) |> size  # vec(container) along dims=1(35, 2, 3)julia> hvcat(5, M...) |> size  # hvcat puts matrices next to each other(14, 15)
source
stack(f, args...; [dims])

Apply a function to each element of a collection, andstack the result. Or to several collections,zipped together.

The function should return arrays (or tuples, or other iterators) all of the same size. These become slices of the result, each separated alongdims (if given) or by default along the last dimensions.

See alsomapslices,eachcol.

Examples

julia> stack(c -> (c, c-32), "julia")2×5 Matrix{Char}: 'j'  'u'  'l'  'i'  'a' 'J'  'U'  'L'  'I'  'A'julia> stack(eachrow([1 2 3; 4 5 6]), (10, 100); dims=1) do row, n         vcat(row, row .* n, row ./ n)       end2×9 Matrix{Float64}: 1.0  2.0  3.0   10.0   20.0   30.0  0.1   0.2   0.3 4.0  5.0  6.0  400.0  500.0  600.0  0.04  0.05  0.06
source
Base.vectFunction
vect(X...)

Create aVector with element type computed from thepromote_typeof of the argument, containing the argument list.

Examples

julia> a = Base.vect(UInt8(1), 2.5, 1//2)3-element Vector{Float64}: 1.0 2.5 0.5
source
Base.circshiftFunction
circshift(A, shifts)

Circularly shift, i.e. rotate, the data in an array. The second argument is a tuple or vector giving the amount to shift in each dimension, or an integer to shift only in the first dimension.

See also:circshift!,circcopy!,bitrotate,<<.

Examples

julia> b = reshape(Vector(1:16), (4,4))4×4 Matrix{Int64}: 1  5   9  13 2  6  10  14 3  7  11  15 4  8  12  16julia> circshift(b, (0,2))4×4 Matrix{Int64}:  9  13  1  5 10  14  2  6 11  15  3  7 12  16  4  8julia> circshift(b, (-1,0))4×4 Matrix{Int64}: 2  6  10  14 3  7  11  15 4  8  12  16 1  5   9  13julia> a = BitArray([true, true, false, false, true])5-element BitVector: 1 1 0 0 1julia> circshift(a, 1)5-element BitVector: 1 1 1 0 0julia> circshift(a, -1)5-element BitVector: 1 0 0 1 1
source
Base.circshift!Function
circshift!(a::AbstractVector, shift::Integer)

Circularly shift, or rotate, the data in vectora byshift positions.

Examples

julia> circshift!([1, 2, 3, 4, 5], 2)5-element Vector{Int64}: 4 5 1 2 3julia> circshift!([1, 2, 3, 4, 5], -2)5-element Vector{Int64}: 3 4 5 1 2
source
circshift!(dest, src, shifts)

Circularly shift, i.e. rotate, the data insrc, storing the result indest.shifts specifies the amount to shift in each dimension.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

See alsocircshift.

source
Base.circcopy!Function
circcopy!(dest, src)

Copysrc todest, indexing each dimension modulo its length.src anddest must have the same size, but can be offset in their indices; any offset results in a (circular) wraparound. If the arrays have overlapping indices, then on the domain of the overlapdest agrees withsrc.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

See also:circshift.

Examples

julia> src = reshape(Vector(1:16), (4,4))4×4 Array{Int64,2}: 1  5   9  13 2  6  10  14 3  7  11  15 4  8  12  16julia> dest = OffsetArray{Int}(undef, (0:3,2:5))julia> circcopy!(dest, src)OffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5: 8  12  16  4 5   9  13  1 6  10  14  2 7  11  15  3julia> dest[1:3,2:4] == src[1:3,2:4]true
source
Base.findallMethod
findall(A)

Return a vectorI of thetrue indices or keys ofA. If there are no such elements ofA, return an empty array. To search for other kinds of values, pass a predicate as the first argument.

Indices or keys are of the same type as those returned bykeys(A) andpairs(A).

See also:findfirst,searchsorted.

Examples

julia> A = [true, false, false, true]4-element Vector{Bool}: 1 0 0 1julia> findall(A)2-element Vector{Int64}: 1 4julia> A = [true false; false true]2×2 Matrix{Bool}: 1  0 0  1julia> findall(A)2-element Vector{CartesianIndex{2}}: CartesianIndex(1, 1) CartesianIndex(2, 2)julia> findall(falses(3))Int64[]
source
Base.findallMethod
findall(f::Function, A)

Return a vectorI of the indices or keys ofA wheref(A[I]) returnstrue. If there are no such elements ofA, return an empty array.

Indices or keys are of the same type as those returned bykeys(A) andpairs(A).

Examples

julia> x = [1, 3, 4]3-element Vector{Int64}: 1 3 4julia> findall(isodd, x)2-element Vector{Int64}: 1 2julia> A = [1 2 0; 3 4 0]2×3 Matrix{Int64}: 1  2  0 3  4  0julia> findall(isodd, A)2-element Vector{CartesianIndex{2}}: CartesianIndex(1, 1) CartesianIndex(2, 1)julia> findall(!iszero, A)4-element Vector{CartesianIndex{2}}: CartesianIndex(1, 1) CartesianIndex(2, 1) CartesianIndex(1, 2) CartesianIndex(2, 2)julia> d = Dict(:A => 10, :B => -1, :C => 0)Dict{Symbol, Int64} with 3 entries:  :A => 10  :B => -1  :C => 0julia> findall(x -> x >= 0, d)2-element Vector{Symbol}: :A :C
source
Base.findfirstMethod
findfirst(A)

Return the index or key of the firsttrue value inA. Returnnothing if no such value is found. To search for other kinds of values, pass a predicate as the first argument.

Indices or keys are of the same type as those returned bykeys(A) andpairs(A).

See also:findall,findnext,findlast,searchsortedfirst.

Examples

julia> A = [false, false, true, false]4-element Vector{Bool}: 0 0 1 0julia> findfirst(A)3julia> findfirst(falses(3)) # returns nothing, but not printed in the REPLjulia> A = [false false; true false]2×2 Matrix{Bool}: 0  0 1  0julia> findfirst(A)CartesianIndex(2, 1)
source
Base.findfirstMethod
findfirst(predicate::Function, A)

Return the index or key of the first element ofA for whichpredicate returnstrue. Returnnothing if there is no such element.

Indices or keys are of the same type as those returned bykeys(A) andpairs(A).

Examples

julia> A = [1, 4, 2, 2]4-element Vector{Int64}: 1 4 2 2julia> findfirst(iseven, A)2julia> findfirst(x -> x>10, A) # returns nothing, but not printed in the REPLjulia> findfirst(isequal(4), A)2julia> A = [1 4; 2 2]2×2 Matrix{Int64}: 1  4 2  2julia> findfirst(iseven, A)CartesianIndex(2, 1)
source
Base.findlastMethod
findlast(A)

Return the index or key of the lasttrue value inA. Returnnothing if there is notrue value inA.

Indices or keys are of the same type as those returned bykeys(A) andpairs(A).

See also:findfirst,findprev,findall.

Examples

julia> A = [true, false, true, false]4-element Vector{Bool}: 1 0 1 0julia> findlast(A)3julia> A = falses(2,2);julia> findlast(A) # returns nothing, but not printed in the REPLjulia> A = [true false; true false]2×2 Matrix{Bool}: 1  0 1  0julia> findlast(A)CartesianIndex(2, 1)
source
Base.findlastMethod
findlast(predicate::Function, A)

Return the index or key of the last element ofA for whichpredicate returnstrue. Returnnothing if there is no such element.

Indices or keys are of the same type as those returned bykeys(A) andpairs(A).

Examples

julia> A = [1, 2, 3, 4]4-element Vector{Int64}: 1 2 3 4julia> findlast(isodd, A)3julia> findlast(x -> x > 5, A) # returns nothing, but not printed in the REPLjulia> A = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> findlast(isodd, A)CartesianIndex(2, 1)
source
Base.findnextMethod
findnext(A, i)

Find the next index after or includingi of atrue element ofA, ornothing if not found.

Indices are of the same type as those returned bykeys(A) andpairs(A).

Examples

julia> A = [false, false, true, false]4-element Vector{Bool}: 0 0 1 0julia> findnext(A, 1)3julia> findnext(A, 4) # returns nothing, but not printed in the REPLjulia> A = [false false; true false]2×2 Matrix{Bool}: 0  0 1  0julia> findnext(A, CartesianIndex(1, 1))CartesianIndex(2, 1)
source
Base.findnextMethod
findnext(predicate::Function, A, i)

Find the next index after or includingi of an element ofA for whichpredicate returnstrue, ornothing if not found. This works for Arrays, Strings, and most other collections that supportgetindex,keys(A), andnextind.

Indices are of the same type as those returned bykeys(A) andpairs(A).

Examples

julia> A = [1, 4, 2, 2];julia> findnext(isodd, A, 1)1julia> findnext(isodd, A, 2) # returns nothing, but not printed in the REPLjulia> A = [1 4; 2 2];julia> findnext(isodd, A, CartesianIndex(1, 1))CartesianIndex(1, 1)julia> findnext(isspace, "a b c", 3)4
source
Base.findprevMethod
findprev(A, i)

Find the previous index before or includingi of atrue element ofA, ornothing if not found.

Indices are of the same type as those returned bykeys(A) andpairs(A).

See also:findnext,findfirst,findall.

Examples

julia> A = [false, false, true, true]4-element Vector{Bool}: 0 0 1 1julia> findprev(A, 3)3julia> findprev(A, 1) # returns nothing, but not printed in the REPLjulia> A = [false false; true true]2×2 Matrix{Bool}: 0  0 1  1julia> findprev(A, CartesianIndex(2, 1))CartesianIndex(2, 1)
source
Base.findprevMethod
findprev(predicate::Function, A, i)

Find the previous index before or includingi of an element ofA for whichpredicate returnstrue, ornothing if not found. This works for Arrays, Strings, and most other collections that supportgetindex,keys(A), andnextind.

Indices are of the same type as those returned bykeys(A) andpairs(A).

Examples

julia> A = [4, 6, 1, 2]4-element Vector{Int64}: 4 6 1 2julia> findprev(isodd, A, 1) # returns nothing, but not printed in the REPLjulia> findprev(isodd, A, 3)3julia> A = [4 6; 1 2]2×2 Matrix{Int64}: 4  6 1  2julia> findprev(isodd, A, CartesianIndex(1, 2))CartesianIndex(2, 1)julia> findprev(isspace, "a b c", 3)2
source
Base.permutedimsFunction
permutedims(A::AbstractArray, perm)permutedims(A::AbstractMatrix)

Permute the dimensions (axes) of arrayA.perm is a tuple or vector ofndims(A) integers specifying the permutation.

IfA is a 2d array (AbstractMatrix), thenperm defaults to(2,1), swapping the two axes ofA (the rows and columns of the matrix). This differs fromtranspose in that the operation is not recursive, which is especially useful for arrays of non-numeric values (where the recursivetranspose would throw an error) and/or 2d arrays that do not represent linear operators.

For 1d arrays, seepermutedims(v::AbstractVector), which returns a 1-row “matrix”.

See alsopermutedims!,PermutedDimsArray,transpose,invperm.

Examples

2d arrays:

Unliketranspose,permutedims can be used to swap rows and columns of 2d arrays of arbitrary non-numeric elements, such as strings:

julia> A = ["a" "b" "c"            "d" "e" "f"]2×3 Matrix{String}: "a"  "b"  "c" "d"  "e"  "f"julia> permutedims(A)3×2 Matrix{String}: "a"  "d" "b"  "e" "c"  "f"

Andpermutedims produces results that differ fromtranspose for matrices whose elements are themselves numeric matrices:

julia> a = [1 2; 3 4];julia> b = [5 6; 7 8];julia> c = [9 10; 11 12];julia> d = [13 14; 15 16];julia> X = [[a] [b]; [c] [d]]2×2 Matrix{Matrix{Int64}}: [1 2; 3 4]     [5 6; 7 8] [9 10; 11 12]  [13 14; 15 16]julia> permutedims(X)2×2 Matrix{Matrix{Int64}}: [1 2; 3 4]  [9 10; 11 12] [5 6; 7 8]  [13 14; 15 16]julia> transpose(X)2×2 transpose(::Matrix{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}: [1 3; 2 4]  [9 11; 10 12] [5 7; 6 8]  [13 15; 14 16]

Multi-dimensional arrays

julia> A = reshape(Vector(1:8), (2,2,2))2×2×2 Array{Int64, 3}:[:, :, 1] = 1  3 2  4[:, :, 2] = 5  7 6  8julia> perm = (3, 1, 2); # put the last dimension firstjulia> B = permutedims(A, perm)2×2×2 Array{Int64, 3}:[:, :, 1] = 1  2 5  6[:, :, 2] = 3  4 7  8julia> A == permutedims(B, invperm(perm)) # the inverse permutationtrue

For each dimensioni ofB = permutedims(A, perm), its corresponding dimension ofA will beperm[i]. This means the equalitysize(B, i) == size(A, perm[i]) holds.

julia> A = randn(5, 7, 11, 13);julia> perm = [4, 1, 3, 2];julia> B = permutedims(A, perm);julia> size(B)(13, 5, 11, 7)julia> size(A)[perm] == anstrue
source
permutedims(v::AbstractVector)

Reshape vectorv into a1 × length(v) row matrix. Differs fromtranspose in that the operation is not recursive, which is especially useful for arrays of non-numeric values (where the recursivetranspose might throw an error).

Examples

Unliketranspose,permutedims can be used on vectors of arbitrary non-numeric elements, such as strings:

julia> permutedims(["a", "b", "c"])1×3 Matrix{String}: "a"  "b"  "c"

For vectors of numbers,permutedims(v) works much liketranspose(v) except that the return type differs (it usesreshape rather than aLinearAlgebra.Transpose view, though both share memory with the original arrayv):

julia> v = [1, 2, 3, 4]4-element Vector{Int64}: 1 2 3 4julia> p = permutedims(v)1×4 Matrix{Int64}: 1  2  3  4julia> r = transpose(v)1×4 transpose(::Vector{Int64}) with eltype Int64: 1  2  3  4julia> p == rtruejulia> typeof(r)Transpose{Int64, Vector{Int64}}julia> p[1] = 5; r[2] = 6; # mutating p or r also changes vjulia> v # shares memory with both p and r4-element Vector{Int64}: 5 6 3 4

However,permutedims produces results that differ fromtranspose for vectors whose elements are themselves numeric matrices:

julia> V = [[[1 2; 3 4]]; [[5 6; 7 8]]]2-element Vector{Matrix{Int64}}: [1 2; 3 4] [5 6; 7 8]julia> permutedims(V)1×2 Matrix{Matrix{Int64}}: [1 2; 3 4]  [5 6; 7 8]julia> transpose(V)1×2 transpose(::Vector{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}: [1 3; 2 4]  [5 7; 6 8]
source
Base.permutedims!Function
permutedims!(dest, src, perm)

Permute the dimensions of arraysrc and store the result in the arraydest.perm is a vector specifying a permutation of lengthndims(src). The preallocated arraydest should havesize(dest) == size(src)[perm] and is completely overwritten. No in-place permutation is supported and unexpected results will happen ifsrc anddest have overlapping memory regions.

See alsopermutedims.

source
Base.PermutedDimsArrays.PermutedDimsArrayType
PermutedDimsArray(A, perm) -> B

Given an AbstractArrayA, create a viewB such that the dimensions appear to be permuted. Similar topermutedims, except that no copying occurs (B shares storage withA).

See alsopermutedims,invperm.

Examples

julia> A = rand(3,5,4);julia> B = PermutedDimsArray(A, (3,1,2));julia> size(B)(4, 3, 5)julia> B[3,1,2] == A[1,2,3]true
source
Base.promote_shapeFunction
promote_shape(s1, s2)

Check two array shapes for compatibility, allowing trailing singleton dimensions, and return whichever shape has more dimensions.

Examples

julia> a = fill(1, (3,4,1,1,1));julia> b = fill(1, (3,4));julia> promote_shape(a,b)(Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1))julia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1))(2, 3, 1, 4, 1)
source

Array functions

Base.accumulateFunction
accumulate(op, A; dims::Integer, [init])

Cumulative operationop along the dimensiondims ofA (providingdims is optional for vectors). An initial valueinit may optionally be provided by a keyword argument. See alsoaccumulate! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).

For common operations there are specialized variants ofaccumulate, seecumsum,cumprod. For a lazy version, seeIterators.accumulate.

Julia 1.5

accumulate on a non-array iterator requires at least Julia 1.5.

Examples

julia> accumulate(+, [1,2,3])3-element Vector{Int64}: 1 3 6julia> accumulate(min, (1, -2, 3, -4, 5), init=0)(0, -2, -2, -4, -4)julia> accumulate(/, (2, 4, Inf), init=100)(50.0, 12.5, 0.0)julia> accumulate(=>, i^2 for i in 1:3)3-element Vector{Any}:          1        1 => 4 (1 => 4) => 9julia> accumulate(+, fill(1, 3, 4))3×4 Matrix{Int64}: 1  4  7  10 2  5  8  11 3  6  9  12julia> accumulate(+, fill(1, 2, 5), dims=2, init=100.0)2×5 Matrix{Float64}: 101.0  102.0  103.0  104.0  105.0 101.0  102.0  103.0  104.0  105.0
source
Base.accumulate!Function
accumulate!(op, B, A; [dims], [init])

Cumulative operationop onA along the dimensiondims, storing the result inB. Providingdims is optional for vectors. If the keyword argumentinit is given, its value is used to instantiate the accumulation.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

See alsoaccumulate,cumsum!,cumprod!.

Examples

julia> x = [1, 0, 2, 0, 3];julia> y = rand(5);julia> accumulate!(+, y, x);julia> y5-element Vector{Float64}: 1.0 1.0 3.0 3.0 6.0julia> A = [1 2 3; 4 5 6];julia> B = similar(A);julia> accumulate!(-, B, A, dims=1)2×3 Matrix{Int64}:  1   2   3 -3  -3  -3julia> accumulate!(*, B, A, dims=2, init=10)2×3 Matrix{Int64}: 10   20    60 40  200  1200
source
Base.cumprodFunction
cumprod(A; dims::Integer)

Cumulative product along the dimensiondim. See alsocumprod! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).

Examples

julia> a = Int8[1 2 3; 4 5 6];julia> cumprod(a, dims=1)2×3 Matrix{Int64}: 1   2   3 4  10  18julia> cumprod(a, dims=2)2×3 Matrix{Int64}: 1   2    6 4  20  120
source
cumprod(itr)

Cumulative product of an iterator.

See alsocumprod!,accumulate,cumsum.

Julia 1.5

cumprod on a non-array iterator requires at least Julia 1.5.

Examples

julia> cumprod(fill(1//2, 3))3-element Vector{Rational{Int64}}: 1//2 1//4 1//8julia> cumprod((1, 2, 1, 3, 1))(1, 2, 2, 6, 6)julia> cumprod("julia")5-element Vector{String}: "j" "ju" "jul" "juli" "julia"
source
Base.cumprod!Function
cumprod!(B, A; dims::Integer)

Cumulative product ofA along the dimensiondims, storing the result inB. See alsocumprod.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

source
cumprod!(y::AbstractVector, x::AbstractVector)

Cumulative product of a vectorx, storing the result iny. See alsocumprod.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

source
Base.cumsumFunction
cumsum(A; dims::Integer)

Cumulative sum along the dimensiondims. See alsocumsum! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).

Examples

julia> a = [1 2 3; 4 5 6]2×3 Matrix{Int64}: 1  2  3 4  5  6julia> cumsum(a, dims=1)2×3 Matrix{Int64}: 1  2  3 5  7  9julia> cumsum(a, dims=2)2×3 Matrix{Int64}: 1  3   6 4  9  15
Note

The return array'seltype isInt for signed integers of less than system word size andUInt for unsigned integers of less than system word size. To preserveeltype of arrays with small signed or unsigned integeraccumulate(+, A) should be used.

julia> cumsum(Int8[100, 28])2-element Vector{Int64}: 100 128julia> accumulate(+,Int8[100, 28])2-element Vector{Int8}:  100 -128

In the former case, the integers are widened to system word size and therefore the result isInt64[100, 128]. In the latter case, no such widening happens and integer overflow results inInt8[100, -128].

source
cumsum(itr)

Cumulative sum of an iterator.

See alsoaccumulate to apply functions other than+.

Julia 1.5

cumsum on a non-array iterator requires at least Julia 1.5.

Examples

julia> cumsum(1:3)3-element Vector{Int64}: 1 3 6julia> cumsum((true, false, true, false, true))(1, 1, 2, 2, 3)julia> cumsum(fill(1, 2) for i in 1:3)3-element Vector{Vector{Int64}}: [1, 1] [2, 2] [3, 3]
source
Base.cumsum!Function
cumsum!(B, A; dims::Integer)

Cumulative sum ofA along the dimensiondims, storing the result inB. See alsocumsum.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

source
Base.diffFunction
diff(A::AbstractVector)diff(A::AbstractArray; dims::Integer)

Finite difference operator on a vector or a multidimensional arrayA. In the latter case the dimension to operate on needs to be specified with thedims keyword argument.

Julia 1.1

diff for arrays with dimension higher than 2 requires at least Julia 1.1.

Examples

julia> a = [2 4; 6 16]2×2 Matrix{Int64}: 2   4 6  16julia> diff(a, dims=2)2×1 Matrix{Int64}:  2 10julia> diff(vec(a))3-element Vector{Int64}:  4 -2 12
source
Base.repeatFunction
repeat(A::AbstractArray, counts::Integer...)

Construct an array by repeating arrayA a given number of times in each dimension, specified bycounts.

See also:fill,Iterators.repeated,Iterators.cycle.

Examples

julia> repeat([1, 2, 3], 2)6-element Vector{Int64}: 1 2 3 1 2 3julia> repeat([1, 2, 3], 2, 3)6×3 Matrix{Int64}: 1  1  1 2  2  2 3  3  3 1  1  1 2  2  2 3  3  3
source
repeat(A::AbstractArray; inner=ntuple(Returns(1), ndims(A)), outer=ntuple(Returns(1), ndims(A)))

Construct an array by repeating the entries ofA. The i-th element ofinner specifies the number of times that the individual entries of the i-th dimension ofA should be repeated. The i-th element ofouter specifies the number of times that a slice along the i-th dimension ofA should be repeated. Ifinner orouter are omitted, no repetition is performed.

Examples

julia> repeat(1:2, inner=2)4-element Vector{Int64}: 1 1 2 2julia> repeat(1:2, outer=2)4-element Vector{Int64}: 1 2 1 2julia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))4×6 Matrix{Int64}: 1  2  1  2  1  2 1  2  1  2  1  2 3  4  3  4  3  4 3  4  3  4  3  4
source
repeat(s::AbstractString, r::Integer)

Repeat a stringr times. This can be written ass^r.

See also^.

Examples

julia> repeat("ha", 3)"hahaha"
source
repeat(c::AbstractChar, r::Integer) -> String

Repeat a characterr times. This can equivalently be accomplished by callingc^r.

Examples

julia> repeat('A', 3)"AAA"
source
Base.rot180Function
rot180(A)

Rotate matrixA 180 degrees.

Examples

julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> rot180(a)2×2 Matrix{Int64}: 4  3 2  1
source
rot180(A, k)

Rotate matrixA 180 degrees an integerk number of times. Ifk is even, this is equivalent to acopy.

Examples

julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> rot180(a,1)2×2 Matrix{Int64}: 4  3 2  1julia> rot180(a,2)2×2 Matrix{Int64}: 1  2 3  4
source
Base.rotl90Function
rotl90(A)

Rotate matrixA left 90 degrees.

Examples

julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> rotl90(a)2×2 Matrix{Int64}: 2  4 1  3
source
rotl90(A, k)

Left-rotate matrixA 90 degrees counterclockwise an integerk number of times. Ifk is a multiple of four (including zero), this is equivalent to acopy.

Examples

julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> rotl90(a,1)2×2 Matrix{Int64}: 2  4 1  3julia> rotl90(a,2)2×2 Matrix{Int64}: 4  3 2  1julia> rotl90(a,3)2×2 Matrix{Int64}: 3  1 4  2julia> rotl90(a,4)2×2 Matrix{Int64}: 1  2 3  4
source
Base.rotr90Function
rotr90(A)

Rotate matrixA right 90 degrees.

Examples

julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> rotr90(a)2×2 Matrix{Int64}: 3  1 4  2
source
rotr90(A, k)

Right-rotate matrixA 90 degrees clockwise an integerk number of times. Ifk is a multiple of four (including zero), this is equivalent to acopy.

Examples

julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> rotr90(a,1)2×2 Matrix{Int64}: 3  1 4  2julia> rotr90(a,2)2×2 Matrix{Int64}: 4  3 2  1julia> rotr90(a,3)2×2 Matrix{Int64}: 2  4 1  3julia> rotr90(a,4)2×2 Matrix{Int64}: 1  2 3  4
source
Base.mapslicesFunction
mapslices(f, A; dims)

Transform the given dimensions of arrayA by applying a functionf on each slice of the formA[..., :, ..., :, ...], with a colon at eachd indims. The results are concatenated along the remaining dimensions.

For example, ifdims = [1,2] andA is 4-dimensional, thenf is called onx = A[:,:,i,j] for alli andj, andf(x) becomesR[:,:,i,j] in the resultR.

See alsoeachcol oreachslice, used withmap orstack.

Examples

julia> A = reshape(1:30,(2,5,3))2×5×3 reshape(::UnitRange{Int64}, 2, 5, 3) with eltype Int64:[:, :, 1] = 1  3  5  7   9 2  4  6  8  10[:, :, 2] = 11  13  15  17  19 12  14  16  18  20[:, :, 3] = 21  23  25  27  29 22  24  26  28  30julia> f(x::Matrix) = fill(x[1,1], 1,4);  # returns a 1×4 matrixjulia> B = mapslices(f, A, dims=(1,2))1×4×3 Array{Int64, 3}:[:, :, 1] = 1  1  1  1[:, :, 2] = 11  11  11  11[:, :, 3] = 21  21  21  21julia> f2(x::AbstractMatrix) = fill(x[1,1], 1,4);julia> B == stack(f2, eachslice(A, dims=3))truejulia> g(x) = x[begin] // x[end-1];  # returns a numberjulia> mapslices(g, A, dims=[1,3])1×5×1 Array{Rational{Int64}, 3}:[:, :, 1] = 1//21  3//23  1//5  7//27  9//29julia> map(g, eachslice(A, dims=2))5-element Vector{Rational{Int64}}: 1//21 3//23 1//5 7//27 9//29julia> mapslices(sum, A; dims=(1,3)) == sum(A; dims=(1,3))true

Notice that ineachslice(A; dims=2), the specified dimension is the onewithout a colon in the slice. This isview(A,:,i,:), whereasmapslices(f, A; dims=(1,3)) usesA[:,i,:]. The functionf may mutate values in the slice without affectingA.

source
Base.eachrowFunction
eachrow(A::AbstractVecOrMat) <: AbstractVector

Create aRowSlices object that is a vector of rows of matrix or vectorA. Row slices are returned asAbstractVector views ofA.

For the inverse, seestack(rows; dims=1).

See alsoeachcol,eachslice andmapslices.

Julia 1.1

This function requires at least Julia 1.1.

Julia 1.9

Prior to Julia 1.9, this returned an iterator.

Examples

julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> s = eachrow(a)2-element RowSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}}: [1, 2] [3, 4]julia> s[1]2-element view(::Matrix{Int64}, 1, :) with eltype Int64: 1 2
source
Base.eachcolFunction
eachcol(A::AbstractVecOrMat) <: AbstractVector

Create aColumnSlices object that is a vector of columns of matrix or vectorA. Column slices are returned asAbstractVector views ofA.

For the inverse, seestack(cols) orreduce(hcat, cols).

See alsoeachrow,eachslice andmapslices.

Julia 1.1

This function requires at least Julia 1.1.

Julia 1.9

Prior to Julia 1.9, this returned an iterator.

Examples

julia> a = [1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> s = eachcol(a)2-element ColumnSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true}}: [1, 3] [2, 4]julia> s[1]2-element view(::Matrix{Int64}, :, 1) with eltype Int64: 1 3
source
Base.eachsliceFunction
eachslice(A::AbstractArray; dims, drop=true)

Create aSlices object that is an array of slices over dimensionsdims ofA, returning views that select all the data from the other dimensions inA.dims can either be an integer or a tuple of integers.

Ifdrop = true (the default), the outerSlices will drop the inner dimensions, and the ordering of the dimensions will match those indims. Ifdrop = false, then theSlices will have the same dimensionality as the underlying array, with inner dimensions having size 1.

Seestack(slices; dims) for the inverse ofeachslice(A; dims::Integer).

See alsoeachrow,eachcol,mapslices andselectdim.

Julia 1.1

This function requires at least Julia 1.1.

Julia 1.9

Prior to Julia 1.9, this returned an iterator, and only a single dimensiondims was supported.

Examples

julia> m = [1 2 3; 4 5 6; 7 8 9]3×3 Matrix{Int64}: 1  2  3 4  5  6 7  8  9julia> s = eachslice(m, dims=1)3-element RowSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}}: [1, 2, 3] [4, 5, 6] [7, 8, 9]julia> s[1]3-element view(::Matrix{Int64}, 1, :) with eltype Int64: 1 2 3julia> eachslice(m, dims=1, drop=false)3×1 Slices{Matrix{Int64}, Tuple{Int64, Colon}, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}, 2}: [1, 2, 3] [4, 5, 6] [7, 8, 9]
source

Combinatorics

Base.invpermFunction
invperm(v)

Return the inverse permutation ofv. IfB = A[v], thenA == B[invperm(v)].

See alsosortperm,invpermute!,isperm,permutedims.

Examples

julia> p = (2, 3, 1);julia> invperm(p)(3, 1, 2)julia> v = [2; 4; 3; 1];julia> invperm(v)4-element Vector{Int64}: 4 1 3 2julia> A = ['a','b','c','d'];julia> B = A[v]4-element Vector{Char}: 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase) 'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase) 'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase) 'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)julia> B[invperm(v)]4-element Vector{Char}: 'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase) 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase) 'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase) 'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)
source
Base.ispermFunction
isperm(v) -> Bool

Returntrue ifv is a valid permutation.

Examples

julia> isperm([1; 2])truejulia> isperm([1; 3])false
source
Base.permute!Method
permute!(v, p)

Permute vectorv in-place, according to permutationp. No checking is done to verify thatp is a permutation.

To return a new permutation, usev[p]. This is generally faster thanpermute!(v, p); it is even faster to write into a pre-allocated output array withu .= @view v[p]. (Even thoughpermute! overwritesv in-place, it internally requires some allocation to keep track of which elements have been moved.)

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

See alsoinvpermute!.

Examples

julia> A = [1, 1, 3, 4];julia> perm = [2, 4, 3, 1];julia> permute!(A, perm);julia> A4-element Vector{Int64}: 1 4 3 1
source
Base.invpermute!Function
invpermute!(v, p)

Likepermute!, but the inverse of the given permutation is applied.

Note that if you have a pre-allocated output array (e.g.u = similar(v)), it is quicker to instead employu[p] = v. (invpermute! internally allocates a copy of the data.)

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

Examples

julia> A = [1, 1, 3, 4];julia> perm = [2, 4, 3, 1];julia> invpermute!(A, perm);julia> A4-element Vector{Int64}: 4 1 3 1
source
Base.reverseMethod
reverse(A; dims=:)

ReverseA along dimensiondims, which can be an integer (a single dimension), a tuple of integers (a tuple of dimensions) or: (reverse along all the dimensions, the default). See alsoreverse! for in-place reversal.

Examples

julia> b = Int64[1 2; 3 4]2×2 Matrix{Int64}: 1  2 3  4julia> reverse(b, dims=2)2×2 Matrix{Int64}: 2  1 4  3julia> reverse(b)2×2 Matrix{Int64}: 4  3 2  1
Julia 1.6

Prior to Julia 1.6, only single-integerdims are supported inreverse.

source
Base.reverseindFunction
reverseind(v, i)

Given an indexi inreverse(v), return the corresponding index inv so thatv[reverseind(v,i)] == reverse(v)[i]. (This can be nontrivial in cases wherev contains non-ASCII characters.)

Examples

julia> s = "Julia🚀""Julia🚀"julia> r = reverse(s)"🚀ailuJ"julia> for i in eachindex(s)           print(r[reverseind(r, i)])       endJulia🚀
source
Base.reverse!Function
reverse!(v [, start=firstindex(v) [, stop=lastindex(v) ]]) -> v

In-place version ofreverse.

Examples

julia> A = Vector(1:5)5-element Vector{Int64}: 1 2 3 4 5julia> reverse!(A);julia> A5-element Vector{Int64}: 5 4 3 2 1
source
reverse!(A; dims=:)

Likereverse, but operates in-place inA.

Julia 1.6

Multidimensionalreverse! requires Julia 1.6.

source

Settings


This document was generated withDocumenter.jl version 1.8.0 onWednesday 9 July 2025. Using Julia version 1.11.6.


[8]ページ先頭

©2009-2025 Movatter.jp