Base.:-
—Method-(x)
Unary minus operator.
Examples
julia> -1-1julia> -(2)-2julia> -[1 2; 3 4]2×2 Matrix{Int64}: -1 -2 -3 -4julia> -(true) # promotes to Int-1julia> -(0x003)0xfffd
Base.:+
—Functiondt::Date + t::Time -> DateTime
The addition of aDate
with aTime
produces aDateTime
. The hour, minute, second, and millisecond parts of theTime
are used along with the year, month, and day of theDate
to create the newDateTime
. Non-zero microseconds or nanoseconds in theTime
type will result in anInexactError
being thrown.
+(x, y...)
Addition operator.
Infixx+y+z+...
calls this function with all arguments, i.e.+(x, y, z, ...)
, which by default then calls(x+y) + z + ...
starting from the left.
Note that overflow is possible for most integer types, including the defaultInt
, when adding large numbers.
Examples
julia> 1 + 20 + 425julia> +(1, 20, 4)25julia> [1,2] + [3,4]2-element Vector{Int64}: 4 6julia> typemax(Int) + 1 < 0true
Base.:-
—Method-(x, y)
Subtraction operator.
Examples
julia> 2 - 3-1julia> -(2, 4.5)-2.5
Base.:*
—Method*(x, y...)
Multiplication operator.
Infixx*y*z*...
calls this function with all arguments, i.e.*(x, y, z, ...)
, which by default then calls(x*y) * z * ...
starting from the left.
Juxtaposition such as2pi
also calls*(2, pi)
. Note that this operation has higher precedence than a literal*
. Note also that juxtaposition "0x..." (integer zero times a variable whose name starts withx
) is forbidden as it clashes with unsigned integer literals:0x01 isa UInt8
.
Note that overflow is possible for most integer types, including the defaultInt
, when multiplying large numbers.
Examples
julia> 2 * 7 * 8112julia> *(2, 7, 8)112julia> [2 0; 0 3] * [1, 10] # matrix * vector2-element Vector{Int64}: 2 30julia> 1/2pi, 1/2*pi # juxtaposition has higher precedence(0.15915494309189535, 1.5707963267948966)julia> x = [1, 2]; x'x # adjoint vector * vector5
Base.:/
—Function/(x, y)
Right division operator: multiplication ofx
by the inverse ofy
on the right.
Gives floating-point results for integer arguments. See÷
for integer division, or//
forRational
results.
Examples
julia> 1/20.5julia> 4/22.0julia> 4.5/22.25
A / B
Matrix right-division:A / B
is equivalent to(B' \ A')'
where\
is the left-division operator. For square matrices, the resultX
is such thatA == X*B
.
See also:rdiv!
.
Examples
julia> A = Float64[1 4 5; 3 9 2]; B = Float64[1 4 2; 3 4 2; 8 7 1];julia> X = A / B2×3 Matrix{Float64}: -0.65 3.75 -1.2 3.25 -2.75 1.0julia> isapprox(A, X*B)truejulia> isapprox(X, A*pinv(B))true
Base.:\
—Method\(x, y)
Left division operator: multiplication ofy
by the inverse ofx
on the left. Gives floating-point results for integer arguments.
Examples
julia> 3 \ 62.0julia> inv(3) * 62.0julia> A = [4 3; 2 1]; x = [5, 6];julia> A \ x2-element Vector{Float64}: 6.5 -7.0julia> inv(A) * x2-element Vector{Float64}: 6.5 -7.0
Base.:^
—Method^(x, y)
Exponentiation operator.
Ifx
andy
are integers, the result may overflow. To enter numbers in scientific notation, useFloat64
literals such as1.2e3
rather than1.2 * 10^3
.
Ify
is anInt
literal (e.g.2
inx^2
or-3
inx^-3
), the Julia codex^y
is transformed by the compiler toBase.literal_pow(^, x, Val(y))
, to enable compile-time specialization on the value of the exponent. (As a default fallback we haveBase.literal_pow(^, x, Val(y)) = ^(x,y)
, where usually^ == Base.^
unless^
has been defined in the calling namespace.) Ify
is a negative integer literal, thenBase.literal_pow
transforms the operation toinv(x)^-y
by default, where-y
is positive.
Examples
julia> 3^5243julia> 3^-1 # uses Base.literal_pow0.3333333333333333julia> p = -1;julia> 3^pERROR: DomainError with -1:Cannot raise an integer x to a negative power -1.[...]julia> 3.0^p0.3333333333333333julia> 10^19 > 0 # integer overflowfalsejulia> big(10)^19 == 1e19true
Base.fma
—Functionfma(x, y, z)
Computesx*y+z
without rounding the intermediate resultx*y
. On some systems this is significantly more expensive thanx*y+z
.fma
is used to improve accuracy in certain algorithms. Seemuladd
.
Base.muladd
—Functionmuladd(x, y, z)
Combined multiply-add: computesx*y+z
, but allowing the add and multiply to be merged with each other or with surrounding operations for performance. For example, this may be implemented as anfma
if the hardware supports it efficiently. The result can be different on different machines and can also be different on the same machine due to constant propagation or other optimizations. Seefma
.
Examples
julia> muladd(3, 2, 1)7julia> 3 * 2 + 17
muladd(A, y, z)
Combined multiply-add,A*y .+ z
, for matrix-matrix or matrix-vector multiplication. The result is always the same size asA*y
, butz
may be smaller, or a scalar.
These methods require Julia 1.6 or later.
Examples
julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; z=[0, 100];julia> muladd(A, B, z)2×2 Matrix{Float64}: 3.0 3.0 107.0 107.0
Base.inv
—Methodinv(x)
Return the multiplicative inverse ofx
, such thatx*inv(x)
orinv(x)*x
yieldsone(x)
(the multiplicative identity) up to roundoff errors.
Ifx
is a number, this is essentially the same asone(x)/x
, but for some typesinv(x)
may be slightly more efficient.
Examples
julia> inv(2)0.5julia> inv(1 + 2im)0.2 - 0.4imjulia> inv(1 + 2im) * (1 + 2im)1.0 + 0.0imjulia> inv(2//3)3//2
inv(::Missing)
requires at least Julia 1.2.
Base.div
—Functiondiv(x, y)÷(x, y)
The quotient from Euclidean (integer) division. Generally equivalent to a mathematical operation x/y without a fractional part.
Examples
julia> 9 ÷ 42julia> -5 ÷ 3-1julia> 5.0 ÷ 22.0julia> div.(-5:5, 3)'1×11 adjoint(::Vector{Int64}) with eltype Int64: -1 -1 -1 0 0 0 0 0 1 1 1
Base.div
—Methoddiv(x, y, r::RoundingMode=RoundToZero)
The quotient from Euclidean (integer) division. Computesx / y
, rounded to an integer according to the rounding moder
. In other words, the quantity
round(x / y, r)
without any intermediate rounding.
The three-argument method taking aRoundingMode
requires Julia 1.4 or later.
See alsofld
andcld
, which are special cases of this function.
RoundFromZero
requires at least Julia 1.9.
Examples:
julia> div(4, 3, RoundToZero) # Matches div(4, 3)1julia> div(4, 3, RoundDown) # Matches fld(4, 3)1julia> div(4, 3, RoundUp) # Matches cld(4, 3)2julia> div(5, 2, RoundNearest)2julia> div(5, 2, RoundNearestTiesAway)3julia> div(-5, 2, RoundNearest)-2julia> div(-5, 2, RoundNearestTiesAway)-3julia> div(-5, 2, RoundNearestTiesUp)-2julia> div(4, 3, RoundFromZero)2julia> div(-4, 3, RoundFromZero)-2
Base.fld
—Functionfld(x, y)
Largest integer less than or equal tox / y
. Equivalent todiv(x, y, RoundDown)
.
Examples
julia> fld(7.3, 5.5)1.0julia> fld.(-5:5, 3)'1×11 adjoint(::Vector{Int64}) with eltype Int64: -2 -2 -1 -1 -1 0 0 0 1 1 1
Becausefld(x, y)
implements strictly correct floored rounding based on the true value of floating-point numbers, unintuitive situations can arise. For example:
julia> fld(6.0, 0.1)59.0julia> 6.0 / 0.160.0julia> 6.0 / big(0.1)59.99999999999999666933092612453056361837965690217069245739573412231113406246995
What is happening here is that the true value of the floating-point number written as0.1
is slightly larger than the numerical value 1/10 while6.0
represents the number 6 precisely. Therefore the true value of6.0 / 0.1
is slightly less than 60. When doing division, this is rounded to precisely60.0
, butfld(6.0, 0.1)
always takes the floor of the true value, so the result is59.0
.
Base.cld
—Functioncld(x, y)
Smallest integer larger than or equal tox / y
. Equivalent todiv(x, y, RoundUp)
.
Examples
julia> cld(5.5, 2.2)3.0julia> cld.(-5:5, 3)'1×11 adjoint(::Vector{Int64}) with eltype Int64: -1 -1 -1 0 0 0 1 1 1 2 2
Base.mod
—Functionmod(x::Integer, r::AbstractUnitRange)
Findy
in the ranger
such that$x ≡ y (mod n)$, wheren = length(r)
, i.e.y = mod(x - first(r), n) + first(r)
.
See alsomod1
.
Examples
julia> mod(0, Base.OneTo(3)) # mod1(0, 3)3julia> mod(3, 0:2) # mod(3, 3)0
This method requires at least Julia 1.3.
mod(x, y)rem(x, y, RoundDown)
The reduction ofx
moduloy
, or equivalently, the remainder ofx
after floored division byy
, i.e.x - y*fld(x,y)
if computed without intermediate rounding.
The result will have the same sign asy
, and magnitude less thanabs(y)
(with some exceptions, see note below).
When used with floating point values, the exact result may not be representable by the type, and so rounding error may occur. In particular, if the exact result is very close toy
, then it may be rounded toy
.
See also:rem
,div
,fld
,mod1
,invmod
.
julia> mod(8, 3)2julia> mod(9, 3)0julia> mod(8.9, 3)2.9000000000000004julia> mod(eps(), 3)2.220446049250313e-16julia> mod(-eps(), 3)3.0julia> mod.(-5:5, 3)'1×11 adjoint(::Vector{Int64}) with eltype Int64: 1 2 0 1 2 0 1 2 0 1 2
rem(x::Integer, T::Type{<:Integer}) -> Tmod(x::Integer, T::Type{<:Integer}) -> T%(x::Integer, T::Type{<:Integer}) -> T
Findy::T
such thatx
≡y
(mod n), where n is the number of integers representable inT
, andy
is an integer in[typemin(T),typemax(T)]
. IfT
can represent any integer (e.g.T == BigInt
), then this operation corresponds to a conversion toT
.
Examples
julia> x = 129 % Int8-127julia> typeof(x)Int8julia> x = 129 % BigInt129julia> typeof(x)BigInt
Base.rem
—Functionrem(x, y)%(x, y)
Remainder from Euclidean division, returning a value of the same sign asx
, and smaller in magnitude thany
. This value is always exact.
Examples
julia> x = 15; y = 4;julia> x % y3julia> x == div(x, y) * y + rem(x, y)truejulia> rem.(-5:5, 3)'1×11 adjoint(::Vector{Int64}) with eltype Int64: -2 -1 0 -2 -1 0 1 2 0 1 2
Base.rem
—Methodrem(x, y, r::RoundingMode=RoundToZero)
Compute the remainder ofx
after integer division byy
, with the quotient rounded according to the rounding moder
. In other words, the quantity
x - y * round(x / y, r)
without any intermediate rounding.
ifr == RoundNearest
, then the result is exact, and in the interval$[-|y| / 2, |y| / 2]$. See alsoRoundNearest
.
ifr == RoundToZero
(default), then the result is exact, and in the interval$[0, |y|)$ ifx
is positive, or$(-|y|, 0]$ otherwise. See alsoRoundToZero
.
ifr == RoundDown
, then the result is in the interval$[0, y)$ ify
is positive, or$(y, 0]$ otherwise. The result may not be exact ifx
andy
have different signs, andabs(x) < abs(y)
. See alsoRoundDown
.
ifr == RoundUp
, then the result is in the interval$(-y, 0]$ ify
is positive, or$[0, -y)$ otherwise. The result may not be exact ifx
andy
have the same sign, andabs(x) < abs(y)
. See alsoRoundUp
.
ifr == RoundFromZero
, then the result is in the interval$(-y, 0]$ ify
is positive, or$[0, -y)$ otherwise. The result may not be exact ifx
andy
have the same sign, andabs(x) < abs(y)
. See alsoRoundFromZero
.
RoundFromZero
requires at least Julia 1.9.
Examples:
julia> x = 9; y = 4;julia> x % y # same as rem(x, y)1julia> x ÷ y # same as div(x, y)2julia> x == div(x, y) * y + rem(x, y)true
Base.Math.rem2pi
—Functionrem2pi(x, r::RoundingMode)
Compute the remainder ofx
after integer division by2π
, with the quotient rounded according to the rounding moder
. In other words, the quantity
x - 2π*round(x/(2π),r)
without any intermediate rounding. This internally uses a high precision approximation of 2π, and so will give a more accurate result thanrem(x,2π,r)
ifr == RoundNearest
, then the result is in the interval$[-π, π]$. This will generally be the most accurate result. See alsoRoundNearest
.
ifr == RoundToZero
, then the result is in the interval$[0, 2π]$ ifx
is positive,. or$[-2π, 0]$ otherwise. See alsoRoundToZero
.
ifr == RoundDown
, then the result is in the interval$[0, 2π]$. See alsoRoundDown
.
ifr == RoundUp
, then the result is in the interval$[-2π, 0]$. See alsoRoundUp
.
Examples
julia> rem2pi(7pi/4, RoundNearest)-0.7853981633974485julia> rem2pi(7pi/4, RoundDown)5.497787143782138
Base.Math.mod2pi
—Functionmod2pi(x)
Modulus after division by2π
, returning in the range$[0,2π)$.
This function computes a floating point representation of the modulus after division by numerically exact2π
, and is therefore not exactly the same asmod(x,2π)
, which would compute the modulus ofx
relative to division by the floating-point number2π
.
Depending on the format of the input value, the closest representable value to 2π may be less than 2π. For example, the expressionmod2pi(2π)
will not return0
, because the intermediate value of2*π
is aFloat64
and2*Float64(π) < 2*big(π)
. Seerem2pi
for more refined control of this behavior.
Examples
julia> mod2pi(9*pi/4)0.7853981633974481
Base.divrem
—Functiondivrem(x, y, r::RoundingMode=RoundToZero)
The quotient and remainder from Euclidean division. Equivalent to(div(x, y, r), rem(x, y, r))
. Equivalently, with the default value ofr
, this call is equivalent to(x ÷ y, x % y)
.
Examples
julia> divrem(3, 7)(0, 3)julia> divrem(7, 3)(2, 1)
Base.fldmod
—Functionfldmod(x, y)
The floored quotient and modulus after division. A convenience wrapper fordivrem(x, y, RoundDown)
. Equivalent to(fld(x, y), mod(x, y))
.
Base.fld1
—Functionfld1(x, y)
Flooring division, returning a value consistent withmod1(x,y)
Examples
julia> x = 15; y = 4;julia> fld1(x, y)4julia> x == fld(x, y) * y + mod(x, y)truejulia> x == (fld1(x, y) - 1) * y + mod1(x, y)true
Base.mod1
—Functionmod1(x, y)
Modulus after flooring division, returning a valuer
such thatmod(r, y) == mod(x, y)
in the range$(0, y]$ for positivey
and in the range$[y,0)$ for negativey
.
With integer arguments and positivey
, this is equal tomod(x, 1:y)
, and hence natural for 1-based indexing. By comparison,mod(x, y) == mod(x, 0:y-1)
is natural for computations with offsets or strides.
Examples
julia> mod1(4, 2)2julia> mod1.(-5:5, 3)'1×11 adjoint(::Vector{Int64}) with eltype Int64: 1 2 3 1 2 3 1 2 3 1 2julia> mod1.([-0.1, 0, 0.1, 1, 2, 2.9, 3, 3.1]', 3)1×8 Matrix{Float64}: 2.9 3.0 0.1 1.0 2.0 2.9 3.0 0.1
Base.fldmod1
—FunctionBase.://
—Function//(num, den)
Divide two integers or rational numbers, giving aRational
result. More generally,//
can be used for exact rational division of other numeric types with integer or rational components, such as complex numbers with integer components.
Note that floating-point (AbstractFloat
) arguments are not permitted by//
(even if the values are rational). The arguments must be subtypes ofInteger
,Rational
, or composites thereof.
Examples
julia> 3 // 53//5julia> (3 // 5) // (2 // 1)3//10julia> (1+2im) // (3+4im)11//25 + 2//25*imjulia> 1.0 // 2ERROR: MethodError: no method matching //(::Float64, ::Int64)[...]
Base.rationalize
—Functionrationalize([T<:Integer=Int,] x; tol::Real=eps(x))
Approximate floating point numberx
as aRational
number with components of the given integer type. The result will differ fromx
by no more thantol
.
Examples
julia> rationalize(5.6)28//5julia> a = rationalize(BigInt, 10.3)103//10julia> typeof(numerator(a))BigInt
Base.numerator
—Functionnumerator(x)
Numerator of the rational representation ofx
.
Examples
julia> numerator(2//3)2julia> numerator(4)4
Base.denominator
—Functiondenominator(x)
Denominator of the rational representation ofx
.
Examples
julia> denominator(2//3)3julia> denominator(4)1
Base.:<<
—Function<<(x, n)
Left bit shift operator,x << n
. Forn >= 0
, the result isx
shifted left byn
bits, filling with0
s. This is equivalent tox * 2^n
. Forn < 0
, this is equivalent tox >> -n
.
Examples
julia> Int8(3) << 212julia> bitstring(Int8(3))"00000011"julia> bitstring(Int8(12))"00001100"
<<(B::BitVector, n) -> BitVector
Left bit shift operator,B << n
. Forn >= 0
, the result isB
with elements shiftedn
positions backwards, filling withfalse
values. Ifn < 0
, elements are shifted forwards. Equivalent toB >> -n
.
Examples
julia> B = BitVector([true, false, true, false, false])5-element BitVector: 1 0 1 0 0julia> B << 15-element BitVector: 0 1 0 0 0julia> B << -15-element BitVector: 0 1 0 1 0
Base.:>>
—Function>>(x, n)
Right bit shift operator,x >> n
. Forn >= 0
, the result isx
shifted right byn
bits, filling with0
s ifx >= 0
,1
s ifx < 0
, preserving the sign ofx
. This is equivalent tofld(x, 2^n)
. Forn < 0
, this is equivalent tox << -n
.
Examples
julia> Int8(13) >> 23julia> bitstring(Int8(13))"00001101"julia> bitstring(Int8(3))"00000011"julia> Int8(-14) >> 2-4julia> bitstring(Int8(-14))"11110010"julia> bitstring(Int8(-4))"11111100"
>>(B::BitVector, n) -> BitVector
Right bit shift operator,B >> n
. Forn >= 0
, the result isB
with elements shiftedn
positions forward, filling withfalse
values. Ifn < 0
, elements are shifted backwards. Equivalent toB << -n
.
Examples
julia> B = BitVector([true, false, true, false, false])5-element BitVector: 1 0 1 0 0julia> B >> 15-element BitVector: 0 1 0 1 0julia> B >> -15-element BitVector: 0 1 0 0 0
Base.:>>>
—Function>>>(x, n)
Unsigned right bit shift operator,x >>> n
. Forn >= 0
, the result isx
shifted right byn
bits, filling with0
s. Forn < 0
, this is equivalent tox << -n
.
ForUnsigned
integer types, this is equivalent to>>
. ForSigned
integer types, this is equivalent tosigned(unsigned(x) >> n)
.
Examples
julia> Int8(-14) >>> 260julia> bitstring(Int8(-14))"11110010"julia> bitstring(Int8(60))"00111100"
BigInt
s are treated as if having infinite size, so no filling is required and this is equivalent to>>
.
>>>(B::BitVector, n) -> BitVector
Unsigned right bitshift operator,B >>> n
. Equivalent toB >> n
. See>>
for details and examples.
Base.bitrotate
—Functionbitrotate(x::Base.BitInteger, k::Integer)
bitrotate(x, k)
implements bitwise rotation. It returns the value ofx
with its bits rotated leftk
times. A negative value ofk
will rotate to the right instead.
This function requires Julia 1.5 or later.
See also:<<
,circshift
,BitArray
.
julia> bitrotate(UInt8(114), 2)0xc9julia> bitstring(bitrotate(0b01110010, 2))"11001001"julia> bitstring(bitrotate(0b01110010, -2))"10011100"julia> bitstring(bitrotate(0b01110010, 8))"01110010"
Base.::
—Function:expr
Quote an expressionexpr
, returning the abstract syntax tree (AST) ofexpr
. The AST may be of typeExpr
,Symbol
, or a literal value. The syntax:identifier
evaluates to aSymbol
.
See also:Expr
,Symbol
,Meta.parse
Examples
julia> expr = :(a = b + 2*x):(a = b + 2x)julia> sym = :some_identifier:some_identifierjulia> value = :0xff0xffjulia> typeof((expr, sym, value))Tuple{Expr, Symbol, UInt8}
Base.range
—Functionrange(start, stop, length)range(start, stop; length, step)range(start; length, stop, step)range(;start, length, stop, step)
Construct a specialized array with evenly spaced elements and optimized storage (anAbstractRange
) from the arguments. Mathematically a range is uniquely determined by any three ofstart
,step
,stop
andlength
. Valid invocations of range are:
range
with any three ofstart
,step
,stop
,length
.range
with two ofstart
,stop
,length
. In this casestep
will be assumed to be one. If both arguments are Integers, aUnitRange
will be returned.range
with one ofstop
orlength
.start
andstep
will be assumed to be one.See Extended Help for additional details on the returned type. See alsologrange
for logarithmically spaced points.
Examples
julia> range(1, length=100)1:100julia> range(1, stop=100)1:100julia> range(1, step=5, length=100)1:5:496julia> range(1, step=5, stop=100)1:5:96julia> range(1, 10, length=101)1.0:0.09:10.0julia> range(1, 100, step=5)1:5:96julia> range(stop=10, length=5)6:10julia> range(stop=10, step=1, length=5)6:1:10julia> range(start=1, step=1, stop=10)1:1:10julia> range(; length = 10)Base.OneTo(10)julia> range(; stop = 6)Base.OneTo(6)julia> range(; stop = 6.5)1.0:1.0:6.0
Iflength
is not specified andstop - start
is not an integer multiple ofstep
, a range that ends beforestop
will be produced.
julia> range(1, 3.5, step=2)1.0:2.0:3.0
Special care is taken to ensure intermediate values are computed rationally. To avoid this induced overhead, see theLinRange
constructor.
stop
as a positional argument requires at least Julia 1.1.
The versions without keyword arguments andstart
as a keyword argument require at least Julia 1.7.
The versions withstop
as a sole keyword argument, orlength
as a sole keyword argument require at least Julia 1.8.
Extended Help
range
will produce aBase.OneTo
when the arguments are Integers and
length
is providedstop
is providedrange
will produce aUnitRange
when the arguments are Integers and
start
andstop
are providedlength
andstop
are providedAUnitRange
is not produced ifstep
is provided even if specified as one.
Base.OneTo
—TypeBase.OneTo(n)
Define anAbstractUnitRange
that behaves like1:n
, with the added distinction that the lower limit is guaranteed (by the type system) to be 1.
Base.StepRangeLen
—TypeStepRangeLen( ref::R, step::S, len, [offset=1]) where { R,S}StepRangeLen{T,R,S}( ref::R, step::S, len, [offset=1]) where {T,R,S}StepRangeLen{T,R,S,L}(ref::R, step::S, len, [offset=1]) where {T,R,S,L}
A ranger
wherer[i]
produces values of typeT
(in the first form,T
is deduced automatically), parameterized by aref
erence value, astep
, and thelen
gth. By defaultref
is the starting valuer[1]
, but alternatively you can supply it as the value ofr[offset]
for some other index1 <= offset <= len
. The syntaxa:b
ora:b:c
, where any ofa
,b
, orc
are floating-point numbers, creates aStepRangeLen
.
The 4th type parameterL
requires at least Julia 1.7.
Base.logrange
—Functionlogrange(start, stop, length)logrange(start, stop; length)
Construct a specialized array whose elements are spaced logarithmically between the given endpoints. That is, the ratio of successive elements is a constant, calculated from the length.
This is similar togeomspace
in Python. UnlikePowerRange
in Mathematica, you specify the number of elements not the ratio. Unlikelogspace
in Python and Matlab, thestart
andstop
arguments are always the first and last elements of the result, not powers applied to some base.
Examples
julia> logrange(10, 4000, length=3)3-element Base.LogRange{Float64, Base.TwicePrecision{Float64}}: 10.0, 200.0, 4000.0julia> ans[2] ≈ sqrt(10 * 4000) # middle element is the geometric meantruejulia> range(10, 40, length=3)[2] ≈ (10 + 40)/2 # arithmetic meantruejulia> logrange(1f0, 32f0, 11)11-element Base.LogRange{Float32, Float64}: 1.0, 1.41421, 2.0, 2.82843, 4.0, 5.65685, 8.0, 11.3137, 16.0, 22.6274, 32.0julia> logrange(1, 1000, length=4) ≈ 10 .^ (0:3)true
See theLogRange
type for further details.
See alsorange
for linearly spaced points.
This function requires at least Julia 1.11.
Base.LogRange
—TypeLogRange{T}(start, stop, len) <: AbstractVector{T}
A range whose elements are spaced logarithmically betweenstart
andstop
, with spacing controlled bylen
. Returned bylogrange
.
LikeLinRange
, the first and last elements will be exactly those provided, but intermediate values may have small floating-point errors. These are calculated using the logs of the endpoints, which are stored on construction, often in higher precision thanT
.
Examples
julia> logrange(1, 4, length=5)5-element Base.LogRange{Float64, Base.TwicePrecision{Float64}}: 1.0, 1.41421, 2.0, 2.82843, 4.0julia> Base.LogRange{Float16}(1, 4, 5)5-element Base.LogRange{Float16, Float64}: 1.0, 1.414, 2.0, 2.828, 4.0julia> logrange(1e-310, 1e-300, 11)[1:2:end]6-element Vector{Float64}: 1.0e-310 9.999999999999974e-309 9.999999999999981e-307 9.999999999999988e-305 9.999999999999994e-303 1.0e-300julia> prevfloat(1e-308, 5) == ans[2]true
Note that integer eltypeT
is not allowed. Use for instanceround.(Int, xs)
, or explicit powers of some integer base:
julia> xs = logrange(1, 512, 4)4-element Base.LogRange{Float64, Base.TwicePrecision{Float64}}: 1.0, 8.0, 64.0, 512.0julia> 2 .^ (0:3:9) |> println[1, 8, 64, 512]
This type requires at least Julia 1.11.
Base.:==
—Function==(x, y)
Generic equality operator. Falls back to===
. Should be implemented for all types with a notion of equality, based on the abstract value that an instance represents. For example, all numeric types are compared by numeric value, ignoring type. Strings are compared as sequences of characters, ignoring encoding. Collections of the same type generally compare their key sets, and if those are==
, then compare the values for each of those keys, returning true if all such pairs are==
. Other properties are typically not taken into account (such as the exact type).
This operator follows IEEE semantics for floating-point numbers:0.0 == -0.0
andNaN != NaN
.
The result is of typeBool
, except when one of the operands ismissing
, in which casemissing
is returned (three-valued logic). Collections generally implement three-valued logic akin toall
, returning missing if any operands contain missing values and all other pairs are equal. Useisequal
or===
to always get aBool
result.
Implementation
New numeric types should implement this function for two arguments of the new type, and handle comparison to other types via promotion rules where possible.
isequal
falls back to==
, so new methods of==
will be used by theDict
type to compare keys. If your type will be used as a dictionary key, it should therefore also implementhash
.
If some type defines==
,isequal
, andisless
then it should also implement<
to ensure consistency of comparisons.
Base.:!=
—Function!=(x, y)≠(x,y)
Not-equals comparison operator. Always gives the opposite answer as==
.
Implementation
New types should generally not implement this, and rely on the fallback definition!=(x,y) = !(x==y)
instead.
Examples
julia> 3 != 2truejulia> "foo" ≠ "foo"false
!=(x)
Create a function that compares its argument tox
using!=
, i.e. a function equivalent toy -> y != x
. The returned function is of typeBase.Fix2{typeof(!=)}
, which can be used to implement specialized methods.
This functionality requires at least Julia 1.2.
Base.:!==
—Function!==(x, y)≢(x,y)
Always gives the opposite answer as===
.
Examples
julia> a = [1, 2]; b = [1, 2];julia> a ≢ btruejulia> a ≢ afalse
Base.:<
—Function<(x, y)
Less-than comparison operator. Falls back toisless
. Because of the behavior of floating-point NaN values, this operator implements a partial order.
Implementation
New types with a canonical partial order should implement this function for two arguments of the new type. Types with a canonical total order should implementisless
instead.
See alsoisunordered
.
Examples
julia> 'a' < 'b'truejulia> "abc" < "abd"truejulia> 5 < 3false
<(x)
Create a function that compares its argument tox
using<
, i.e. a function equivalent toy -> y < x
. The returned function is of typeBase.Fix2{typeof(<)}
, which can be used to implement specialized methods.
This functionality requires at least Julia 1.2.
Base.:<=
—Function<=(x, y)≤(x,y)
Less-than-or-equals comparison operator. Falls back to(x < y) | (x == y)
.
Examples
julia> 'a' <= 'b'truejulia> 7 ≤ 7 ≤ 9truejulia> "abc" ≤ "abc"truejulia> 5 <= 3false
<=(x)
Create a function that compares its argument tox
using<=
, i.e. a function equivalent toy -> y <= x
. The returned function is of typeBase.Fix2{typeof(<=)}
, which can be used to implement specialized methods.
This functionality requires at least Julia 1.2.
Base.:>
—Function>(x, y)
Greater-than comparison operator. Falls back toy < x
.
Implementation
Generally, new types should implement<
instead of this function, and rely on the fallback definition>(x, y) = y < x
.
Examples
julia> 'a' > 'b'falsejulia> 7 > 3 > 1truejulia> "abc" > "abd"falsejulia> 5 > 3true
>(x)
Create a function that compares its argument tox
using>
, i.e. a function equivalent toy -> y > x
. The returned function is of typeBase.Fix2{typeof(>)}
, which can be used to implement specialized methods.
This functionality requires at least Julia 1.2.
Base.:>=
—Function>=(x, y)≥(x,y)
Greater-than-or-equals comparison operator. Falls back toy <= x
.
Examples
julia> 'a' >= 'b'falsejulia> 7 ≥ 7 ≥ 3truejulia> "abc" ≥ "abc"truejulia> 5 >= 3true
>=(x)
Create a function that compares its argument tox
using>=
, i.e. a function equivalent toy -> y >= x
. The returned function is of typeBase.Fix2{typeof(>=)}
, which can be used to implement specialized methods.
This functionality requires at least Julia 1.2.
Base.cmp
—Functioncmp(x,y)
Return -1, 0, or 1 depending on whetherx
is less than, equal to, or greater thany
, respectively. Uses the total order implemented byisless
.
Examples
julia> cmp(1, 2)-1julia> cmp(2, 1)1julia> cmp(2+im, 3-im)ERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64})[...]
cmp(<, x, y)
Return -1, 0, or 1 depending on whetherx
is less than, equal to, or greater thany
, respectively. The first argument specifies a less-than comparison function to use.
cmp(a::AbstractString, b::AbstractString) -> Int
Compare two strings. Return0
if both strings have the same length and the character at each index is the same in both strings. Return-1
ifa
is a prefix ofb
, or ifa
comes beforeb
in alphabetical order. Return1
ifb
is a prefix ofa
, or ifb
comes beforea
in alphabetical order (technically, lexicographical order by Unicode code points).
Examples
julia> cmp("abc", "abc")0julia> cmp("ab", "abc")-1julia> cmp("abc", "ab")1julia> cmp("ab", "ac")-1julia> cmp("ac", "ab")1julia> cmp("α", "a")1julia> cmp("b", "β")-1
Base.:~
—FunctionBase.:&
—Functionx & y
Bitwise and. Implementsthree-valued logic, returningmissing
if one operand ismissing
and the other istrue
. Add parentheses for function application form:(&)(x, y)
.
Examples
julia> 4 & 100julia> 4 & 124julia> true & missingmissingjulia> false & missingfalse
Base.:|
—Functionx | y
Bitwise or. Implementsthree-valued logic, returningmissing
if one operand ismissing
and the other isfalse
.
Examples
julia> 4 | 1014julia> 4 | 15julia> true | missingtruejulia> false | missingmissing
Base.xor
—Functionxor(x, y)⊻(x, y)
Bitwise exclusive or ofx
andy
. Implementsthree-valued logic, returningmissing
if one of the arguments ismissing
.
The infix operationa ⊻ b
is a synonym forxor(a,b)
, and⊻
can be typed by tab-completing\xor
or\veebar
in the Julia REPL.
Examples
julia> xor(true, false)truejulia> xor(true, true)falsejulia> xor(true, missing)missingjulia> false ⊻ falsefalsejulia> [true; true; false] .⊻ [true; false; false]3-element BitVector: 0 1 0
Base.nand
—Functionnand(x, y)⊼(x, y)
Bitwise nand (not and) ofx
andy
. Implementsthree-valued logic, returningmissing
if one of the arguments ismissing
.
The infix operationa ⊼ b
is a synonym fornand(a,b)
, and⊼
can be typed by tab-completing\nand
or\barwedge
in the Julia REPL.
Examples
julia> nand(true, false)truejulia> nand(true, true)falsejulia> nand(true, missing)missingjulia> false ⊼ falsetruejulia> [true; true; false] .⊼ [true; false; false]3-element BitVector: 0 1 1
Base.nor
—Functionnor(x, y)⊽(x, y)
Bitwise nor (not or) ofx
andy
. Implementsthree-valued logic, returningmissing
if one of the arguments ismissing
and the other is nottrue
.
The infix operationa ⊽ b
is a synonym fornor(a,b)
, and⊽
can be typed by tab-completing\nor
or\barvee
in the Julia REPL.
Examples
julia> nor(true, false)falsejulia> nor(true, true)falsejulia> nor(true, missing)falsejulia> false ⊽ falsetruejulia> false ⊽ missingmissingjulia> [true; true; false] .⊽ [true; false; false]3-element BitVector: 0 0 1
Base.:!
—Function!(x)
Boolean not. Implementsthree-valued logic, returningmissing
ifx
ismissing
.
See also~
for bitwise not.
Examples
julia> !truefalsejulia> !falsetruejulia> !missingmissingjulia> .![true false true]1×3 BitMatrix: 0 1 0
!f::Function
Predicate function negation: when the argument of!
is a function, it returns a composed function which computes the boolean negation off
.
See also∘
.
Examples
julia> str = "∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε""∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε"julia> filter(isletter, str)"εδxyδfxfyε"julia> filter(!isletter, str)"∀ > 0, ∃ > 0: |-| < ⇒ |()-()| < "
Starting with Julia 1.9,!f
returns aComposedFunction
instead of an anonymous function.
&&
—Keywordx && y
Short-circuiting boolean AND.
See also&
, the ternary operator? :
, and the manual section oncontrol flow.
Examples
julia> x = 3;julia> x > 1 && x < 10 && x isa Inttruejulia> x < 0 && error("expected positive x")false
||
—Keywordx || y
Short-circuiting boolean OR.
Examples
julia> pi < 3 || ℯ < 3truejulia> false || true || println("neither is true!")true
Base.isapprox
—Functionisapprox(x, y; atol::Real=0, rtol::Real=atol>0 ? 0 : √eps, nans::Bool=false[, norm::Function])
Inexact equality comparison. Two numbers compare equal if their relative distanceor their absolute distance is within tolerance bounds:isapprox
returnstrue
ifnorm(x-y) <= max(atol, rtol*max(norm(x), norm(y)))
. The defaultatol
(absolute tolerance) is zero and the defaultrtol
(relative tolerance) depends on the types ofx
andy
. The keyword argumentnans
determines whether or not NaN values are considered equal (defaults to false).
For real or complex floating-point values, if anatol > 0
is not specified,rtol
defaults to the square root ofeps
of the type ofx
ory
, whichever is bigger (least precise). This corresponds to requiring equality of about half of the significant digits. Otherwise, e.g. for integer arguments or if anatol > 0
is supplied,rtol
defaults to zero.
Thenorm
keyword defaults toabs
for numeric(x,y)
and toLinearAlgebra.norm
for arrays (where an alternativenorm
choice is sometimes useful). Whenx
andy
are arrays, ifnorm(x-y)
is not finite (i.e.±Inf
orNaN
), the comparison falls back to checking whether all elements ofx
andy
are approximately equal component-wise.
The binary operator≈
is equivalent toisapprox
with the default arguments, andx ≉ y
is equivalent to!isapprox(x,y)
.
Note thatx ≈ 0
(i.e., comparing to zero with the default tolerances) is equivalent tox == 0
since the defaultatol
is0
. In such cases, you should either supply an appropriateatol
(or usenorm(x) ≤ atol
) or rearrange your code (e.g. usex ≈ y
rather thanx - y ≈ 0
). It is not possible to pick a nonzeroatol
automatically because it depends on the overall scaling (the "units") of your problem: for example, inx - y ≈ 0
,atol=1e-9
is an absurdly small tolerance ifx
is theradius of the Earth in meters, but an absurdly large tolerance ifx
is theradius of a Hydrogen atom in meters.
Passing thenorm
keyword argument when comparing numeric (non-array) arguments requires Julia 1.6 or later.
Examples
julia> isapprox(0.1, 0.15; atol=0.05)truejulia> isapprox(0.1, 0.15; rtol=0.34)truejulia> isapprox(0.1, 0.15; rtol=0.33)falsejulia> 0.1 + 1e-10 ≈ 0.1truejulia> 1e-10 ≈ 0falsejulia> isapprox(1e-10, 0, atol=1e-8)truejulia> isapprox([10.0^9, 1.0], [10.0^9, 2.0]) # using `norm`true
isapprox(x; kwargs...) / ≈(x; kwargs...)
Create a function that compares its argument tox
using≈
, i.e. a function equivalent toy -> y ≈ x
.
The keyword arguments supported here are the same as those in the 2-argumentisapprox
.
This method requires Julia 1.5 or later.
Base.sin
—Methodsin(x)
Compute sine ofx
, wherex
is in radians.
See alsosind
,sinpi
,sincos
,cis
,asin
.
Examples
julia> round.(sin.(range(0, 2pi, length=9)'), digits=3)1×9 Matrix{Float64}: 0.0 0.707 1.0 0.707 0.0 -0.707 -1.0 -0.707 -0.0julia> sind(45)0.7071067811865476julia> sinpi(1/4)0.7071067811865475julia> round.(sincos(pi/6), digits=3)(0.5, 0.866)julia> round(cis(pi/6), digits=3)0.866 + 0.5imjulia> round(exp(im*pi/6), digits=3)0.866 + 0.5im
Base.cos
—MethodBase.Math.sincos
—Methodsincos(x)
Simultaneously compute the sine and cosine ofx
, wherex
is in radians, returning a tuple(sine, cosine)
.
Base.tan
—Methodtan(x)
Compute tangent ofx
, wherex
is in radians.
Base.Math.sind
—Functionsind(x)
Compute sine ofx
, wherex
is in degrees. Ifx
is a matrix,x
needs to be a square matrix.
Matrix arguments require Julia 1.7 or later.
Base.Math.cosd
—Functioncosd(x)
Compute cosine ofx
, wherex
is in degrees. Ifx
is a matrix,x
needs to be a square matrix.
Matrix arguments require Julia 1.7 or later.
Base.Math.tand
—Functiontand(x)
Compute tangent ofx
, wherex
is in degrees. Ifx
is a matrix,x
needs to be a square matrix.
Matrix arguments require Julia 1.7 or later.
Base.Math.sincosd
—Functionsincosd(x)
Simultaneously compute the sine and cosine ofx
, wherex
is in degrees.
This function requires at least Julia 1.3.
Base.Math.sinpi
—Functionsinpi(x)
Compute$\sin(\pi x)$ more accurately thansin(pi*x)
, especially for largex
.
Base.Math.cospi
—Functioncospi(x)
Compute$\cos(\pi x)$ more accurately thancos(pi*x)
, especially for largex
.
Base.Math.tanpi
—Functiontanpi(x)
Compute$\tan(\pi x)$ more accurately thantan(pi*x)
, especially for largex
.
This function requires at least Julia 1.10.
Base.Math.sincospi
—Functionsincospi(x)
Simultaneously computesinpi(x)
andcospi(x)
(the sine and cosine ofπ*x
, wherex
is in radians), returning a tuple(sine, cosine)
.
This function requires Julia 1.6 or later.
Base.sinh
—Methodsinh(x)
Compute hyperbolic sine ofx
.
Base.cosh
—Methodcosh(x)
Compute hyperbolic cosine ofx
.
Base.tanh
—Methodtanh(x)
Compute hyperbolic tangent ofx
.
Examples
julia> tanh.(-3:3f0) # Here 3f0 isa Float327-element Vector{Float32}: -0.9950548 -0.9640276 -0.7615942 0.0 0.7615942 0.9640276 0.9950548julia> tan.(im .* (1:3))3-element Vector{ComplexF64}: 0.0 + 0.7615941559557649im 0.0 + 0.9640275800758169im 0.0 + 0.9950547536867306im
Base.asin
—Methodasin(x)
Compute the inverse sine ofx
, where the output is in radians.
See alsoasind
for output in degrees.
Examples
julia> asin.((0, 1/2, 1))(0.0, 0.5235987755982989, 1.5707963267948966)julia> asind.((0, 1/2, 1))(0.0, 30.000000000000004, 90.0)
Base.acos
—Methodacos(x)
Compute the inverse cosine ofx
, where the output is in radians
Base.atan
—Methodatan(y)atan(y, x)
Compute the inverse tangent ofy
ory/x
, respectively.
For one real argument, this is the angle in radians between the positivex-axis and the point (1,y), returning a value in the interval$[-\pi/2, \pi/2]$.
For two arguments, this is the angle in radians between the positivex-axis and the point (x,y), returning a value in the interval$[-\pi, \pi]$. This corresponds to a standardatan2
function. Note that by conventionatan(0.0,x)
is defined as$\pi$ andatan(-0.0,x)
is defined as$-\pi$ whenx < 0
.
See alsoatand
for degrees.
Examples
julia> rad2deg(atan(-1/√3))-30.000000000000004julia> rad2deg(atan(-1, √3))-30.000000000000004julia> rad2deg(atan(1, -√3))150.0
Base.Math.asind
—Functionasind(x)
Compute the inverse sine ofx
, where the output is in degrees. Ifx
is a matrix,x
needs to be a square matrix.
Matrix arguments require Julia 1.7 or later.
Base.Math.acosd
—Functionacosd(x)
Compute the inverse cosine ofx
, where the output is in degrees. Ifx
is a matrix,x
needs to be a square matrix.
Matrix arguments require Julia 1.7 or later.
Base.Math.atand
—Functionatand(y)atand(y,x)
Compute the inverse tangent ofy
ory/x
, respectively, where the output is in degrees.
The one-argument method supports square matrix arguments as of Julia 1.7.
Base.Math.sec
—Methodsec(x)
Compute the secant ofx
, wherex
is in radians.
Base.Math.csc
—Methodcsc(x)
Compute the cosecant ofx
, wherex
is in radians.
Base.Math.cot
—Methodcot(x)
Compute the cotangent ofx
, wherex
is in radians.
Base.Math.secd
—Functionsecd(x)
Compute the secant ofx
, wherex
is in degrees.
Base.Math.cscd
—Functioncscd(x)
Compute the cosecant ofx
, wherex
is in degrees.
Base.Math.cotd
—Functioncotd(x)
Compute the cotangent ofx
, wherex
is in degrees.
Base.Math.asec
—Methodasec(x)
Compute the inverse secant ofx
, where the output is in radians.
Base.Math.acsc
—Methodacsc(x)
Compute the inverse cosecant ofx
, where the output is in radians.
Base.Math.acot
—Methodacot(x)
Compute the inverse cotangent ofx
, where the output is in radians.
Base.Math.asecd
—Functionasecd(x)
Compute the inverse secant ofx
, where the output is in degrees. Ifx
is a matrix,x
needs to be a square matrix.
Matrix arguments require Julia 1.7 or later.
Base.Math.acscd
—Functionacscd(x)
Compute the inverse cosecant ofx
, where the output is in degrees. Ifx
is a matrix,x
needs to be a square matrix.
Matrix arguments require Julia 1.7 or later.
Base.Math.acotd
—Functionacotd(x)
Compute the inverse cotangent ofx
, where the output is in degrees. Ifx
is a matrix,x
needs to be a square matrix.
Matrix arguments require Julia 1.7 or later.
Base.Math.sech
—Methodsech(x)
Compute the hyperbolic secant ofx
.
Base.Math.csch
—Methodcsch(x)
Compute the hyperbolic cosecant ofx
.
Base.Math.coth
—Methodcoth(x)
Compute the hyperbolic cotangent ofx
.
Base.asinh
—Methodasinh(x)
Compute the inverse hyperbolic sine ofx
.
Base.acosh
—Methodacosh(x)
Compute the inverse hyperbolic cosine ofx
.
Base.atanh
—Methodatanh(x)
Compute the inverse hyperbolic tangent ofx
.
Base.Math.asech
—Methodasech(x)
Compute the inverse hyperbolic secant ofx
.
Base.Math.acsch
—Methodacsch(x)
Compute the inverse hyperbolic cosecant ofx
.
Base.Math.acoth
—Methodacoth(x)
Compute the inverse hyperbolic cotangent ofx
.
Base.Math.sinc
—Functionsinc(x)
Compute normalized sinc function$\operatorname{sinc}(x) = \sin(\pi x) / (\pi x)$ if$x \neq 0$, and$1$ if$x = 0$.
See alsocosc
, its derivative.
Base.Math.cosc
—Functioncosc(x)
Compute$\cos(\pi x) / x - \sin(\pi x) / (\pi x^2)$ if$x \neq 0$, and$0$ if$x = 0$. This is the derivative ofsinc(x)
.
See alsosinc
.
Base.Math.deg2rad
—Functiondeg2rad(x)
Convertx
from degrees to radians.
Examples
julia> deg2rad(90)1.5707963267948966
Base.Math.rad2deg
—FunctionBase.Math.hypot
—Functionhypot(x, y)
Compute the hypotenuse$\sqrt{|x|^2+|y|^2}$ avoiding overflow and underflow.
This code is an implementation of the algorithm described in: An Improved Algorithm forhypot(a,b)
by Carlos F. Borges The article is available online at arXiv at the link https://arxiv.org/abs/1904.09481
hypot(x...)
Compute the hypotenuse$\sqrt{\sum |x_i|^2}$ avoiding overflow and underflow.
See alsonorm
in theLinearAlgebra
standard library.
Examples
julia> a = Int64(10)^10;julia> hypot(a, a)1.4142135623730951e10julia> √(a^2 + a^2) # a^2 overflowsERROR: DomainError with -2.914184810805068e18:sqrt was called with a negative real argument but will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).Stacktrace:[...]julia> hypot(3, 4im)5.0julia> hypot(-5.7)5.7julia> hypot(3, 4im, 12.0)13.0julia> using LinearAlgebrajulia> norm([a, a, a, a]) == hypot(a, a, a, a)true
Base.log
—Methodlog(x)
Compute the natural logarithm ofx
.
ThrowsDomainError
for negativeReal
arguments. Use complex arguments to obtain complex results. Has a branch cut along the negative real axis, for which-0.0im
is taken to be below the axis.
Examples
julia> log(2)0.6931471805599453julia> log(-3)ERROR: DomainError with -3.0:log was called with a negative real argument but will only return a complex result if called with a complex argument. Try log(Complex(x)).Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31[...]julia> log(-3 + 0im)1.0986122886681098 + 3.141592653589793imjulia> log(-3 - 0.0im)1.0986122886681098 - 3.141592653589793imjulia> log.(exp.(-1:1))3-element Vector{Float64}: -1.0 0.0 1.0
Base.log
—Methodlog(b,x)
Compute the baseb
logarithm ofx
. ThrowsDomainError
for negativeReal
arguments.
Examples
julia> log(4,8)1.5julia> log(4,2)0.5julia> log(-2, 3)ERROR: DomainError with -2.0:log was called with a negative real argument but will only return a complex result if called with a complex argument. Try log(Complex(x)).Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31[...]julia> log(2, -3)ERROR: DomainError with -3.0:log was called with a negative real argument but will only return a complex result if called with a complex argument. Try log(Complex(x)).Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31[...]
Base.log2
—Functionlog2(x)
Compute the logarithm ofx
to base 2. ThrowsDomainError
for negativeReal
arguments.
Examples
julia> log2(4)2.0julia> log2(10)3.321928094887362julia> log2(-2)ERROR: DomainError with -2.0:log2 was called with a negative real argument but will only return a complex result if called with a complex argument. Try log2(Complex(x)).Stacktrace: [1] throw_complex_domainerror(f::Symbol, x::Float64) at ./math.jl:31[...]julia> log2.(2.0 .^ (-1:1))3-element Vector{Float64}: -1.0 0.0 1.0
Base.log10
—Functionlog10(x)
Compute the logarithm ofx
to base 10. ThrowsDomainError
for negativeReal
arguments.
Examples
julia> log10(100)2.0julia> log10(2)0.3010299956639812julia> log10(-2)ERROR: DomainError with -2.0:log10 was called with a negative real argument but will only return a complex result if called with a complex argument. Try log10(Complex(x)).Stacktrace: [1] throw_complex_domainerror(f::Symbol, x::Float64) at ./math.jl:31[...]
Base.log1p
—Functionlog1p(x)
Accurate natural logarithm of1+x
. ThrowsDomainError
forReal
arguments less than -1.
Examples
julia> log1p(-0.5)-0.6931471805599453julia> log1p(0)0.0julia> log1p(-2)ERROR: DomainError with -2.0:log1p was called with a real argument < -1 but will only return a complex result if called with a complex argument. Try log1p(Complex(x)).Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31[...]
Base.Math.frexp
—Functionfrexp(val)
Return(x,exp)
such thatx
has a magnitude in the interval$[1/2, 1)$ or 0, andval
is equal to$x \times 2^{exp}$.
See alsosignificand
,exponent
,ldexp
.
Examples
julia> frexp(6.0)(0.75, 3)julia> significand(6.0), exponent(6.0) # interval [1, 2) instead(1.5, 2)julia> frexp(0.0), frexp(NaN), frexp(-Inf) # exponent would give an error((0.0, 0), (NaN, 0), (-Inf, 0))
Base.exp
—Methodexp(x)
Compute the natural base exponential ofx
, in other words$ℯ^x$.
Examples
julia> exp(1.0)2.718281828459045julia> exp(im * pi) ≈ cis(pi)true
Base.exp2
—Functionexp2(x)
Compute the base 2 exponential ofx
, in other words$2^x$.
Examples
julia> exp2(5)32.0julia> 2^532julia> exp2(63) > typemax(Int)true
Base.exp10
—Functionexp10(x)
Compute the base 10 exponential ofx
, in other words$10^x$.
Examples
julia> exp10(2)100.0julia> 10^2100
Base.Math.ldexp
—FunctionBase.Math.modf
—Functionmodf(x)
Return a tuple(fpart, ipart)
of the fractional and integral parts of a number. Both parts have the same sign as the argument.
Examples
julia> modf(3.5)(0.5, 3.0)julia> modf(-3.5)(-0.5, -3.0)
Base.expm1
—Functionexpm1(x)
Accurately compute$e^x-1$. It avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small values of x.
Examples
julia> expm1(1e-16)1.0e-16julia> exp(1e-16) - 10.0
Base.round
—Functionround([T,] x, [r::RoundingMode])round(x, [r::RoundingMode]; digits::Integer=0, base = 10)round(x, [r::RoundingMode]; sigdigits::Integer, base = 10)
Rounds the numberx
.
Without keyword arguments,x
is rounded to an integer value, returning a value of typeT
, or of the same type ofx
if noT
is provided. AnInexactError
will be thrown if the value is not representable byT
, similar toconvert
.
If thedigits
keyword argument is provided, it rounds to the specified number of digits after the decimal place (or before if negative), in basebase
.
If thesigdigits
keyword argument is provided, it rounds to the specified number of significant digits, in basebase
.
TheRoundingMode
r
controls the direction of the rounding; the default isRoundNearest
, which rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer. Note thatround
may give incorrect results if the global rounding mode is changed (seerounding
).
When rounding to a floating point type, will round to integers representable by that type (and Inf) rather than true integers. Inf is treated as one ulp greater than thefloatmax(T)
for purposes of determining "nearest", similar toconvert
.
Examples
julia> round(1.7)2.0julia> round(Int, 1.7)2julia> round(1.5)2.0julia> round(2.5)2.0julia> round(pi; digits=2)3.14julia> round(pi; digits=3, base=2)3.125julia> round(123.456; sigdigits=2)120.0julia> round(357.913; sigdigits=4, base=2)352.0julia> round(Float16, typemax(UInt128))Inf16julia> floor(Float16, typemax(UInt128))Float16(6.55e4)
Rounding to specified digits in bases other than 2 can be inexact when operating on binary floating point numbers. For example, theFloat64
value represented by1.15
is actuallyless than 1.15, yet will be rounded to 1.2. For example:
julia> x = 1.151.15julia> big(1.15)1.149999999999999911182158029987476766109466552734375julia> x < 115//100truejulia> round(x, digits=1)1.2
Extensions
To extendround
to new numeric types, it is typically sufficient to defineBase.round(x::NewType, r::RoundingMode)
.
Base.Rounding.RoundingMode
—TypeRoundingMode
A type used for controlling the rounding mode of floating point operations (viarounding
/setrounding
functions), or as optional arguments for rounding to the nearest integer (via theround
function).
Currently supported rounding modes are:
RoundNearest
(default)RoundNearestTiesAway
RoundNearestTiesUp
RoundToZero
RoundFromZero
RoundUp
RoundDown
RoundFromZero
requires at least Julia 1.9. Prior versions supportRoundFromZero
forBigFloat
s only.
Base.Rounding.RoundNearest
—ConstantRoundNearest
The default rounding mode. Rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer.
Base.Rounding.RoundNearestTiesAway
—ConstantRoundNearestTiesAway
Rounds to nearest integer, with ties rounded away from zero (C/C++round
behaviour).
Base.Rounding.RoundNearestTiesUp
—ConstantRoundNearestTiesUp
Rounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScriptround
behaviour).
Base.Rounding.RoundToZero
—ConstantBase.Rounding.RoundFromZero
—ConstantRoundFromZero
Rounds away from zero.
RoundFromZero
requires at least Julia 1.9. Prior versions supportRoundFromZero
forBigFloat
s only.
Examples
julia> BigFloat("1.0000000000000001", 5, RoundFromZero)1.06
Base.Rounding.RoundUp
—ConstantBase.Rounding.RoundDown
—ConstantBase.round
—Methodround(z::Complex[, RoundingModeReal, [RoundingModeImaginary]])round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; digits=0, base=10)round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; sigdigits, base=10)
Return the nearest integral value of the same type as the complex-valuedz
toz
, breaking ties using the specifiedRoundingMode
s. The firstRoundingMode
is used for rounding the real components while the second is used for rounding the imaginary components.
RoundingModeReal
andRoundingModeImaginary
default toRoundNearest
, which rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer.
Examples
julia> round(3.14 + 4.5im)3.0 + 4.0imjulia> round(3.14 + 4.5im, RoundUp, RoundNearestTiesUp)4.0 + 5.0imjulia> round(3.14159 + 4.512im; digits = 1)3.1 + 4.5imjulia> round(3.14159 + 4.512im; sigdigits = 3)3.14 + 4.51im
Base.ceil
—Functionceil([T,] x)ceil(x; digits::Integer= [, base = 10])ceil(x; sigdigits::Integer= [, base = 10])
ceil(x)
returns the nearest integral value of the same type asx
that is greater than or equal tox
.
ceil(T, x)
converts the result to typeT
, throwing anInexactError
if the ceiled value is not representable as aT
.
Keywordsdigits
,sigdigits
andbase
work as forround
.
To supportceil
for a new type, defineBase.round(x::NewType, ::RoundingMode{:Up})
.
Base.floor
—Functionfloor([T,] x)floor(x; digits::Integer= [, base = 10])floor(x; sigdigits::Integer= [, base = 10])
floor(x)
returns the nearest integral value of the same type asx
that is less than or equal tox
.
floor(T, x)
converts the result to typeT
, throwing anInexactError
if the floored value is not representable aT
.
Keywordsdigits
,sigdigits
andbase
work as forround
.
To supportfloor
for a new type, defineBase.round(x::NewType, ::RoundingMode{:Down})
.
Base.trunc
—Functiontrunc([T,] x)trunc(x; digits::Integer= [, base = 10])trunc(x; sigdigits::Integer= [, base = 10])
trunc(x)
returns the nearest integral value of the same type asx
whose absolute value is less than or equal to the absolute value ofx
.
trunc(T, x)
converts the result to typeT
, throwing anInexactError
if the truncated value is not representable aT
.
Keywordsdigits
,sigdigits
andbase
work as forround
.
To supporttrunc
for a new type, defineBase.round(x::NewType, ::RoundingMode{:ToZero})
.
See also:%
,floor
,unsigned
,unsafe_trunc
.
Examples
julia> trunc(2.22)2.0julia> trunc(-2.22, digits=1)-2.2julia> trunc(Int, -2.22)-2
Base.unsafe_trunc
—Functionunsafe_trunc(T, x)
Return the nearest integral value of typeT
whose absolute value is less than or equal to the absolute value ofx
. If the value is not representable byT
, an arbitrary value will be returned. See alsotrunc
.
Examples
julia> unsafe_trunc(Int, -2.2)-2julia> unsafe_trunc(Int, NaN)-9223372036854775808
Base.min
—Functionmin(x, y, ...)
Return the minimum of the arguments, with respect toisless
. If any of the arguments ismissing
, returnmissing
. See also theminimum
function to take the minimum element from a collection.
Examples
julia> min(2, 5, 1)1julia> min(4, missing, 6)missing
Base.max
—Functionmax(x, y, ...)
Return the maximum of the arguments, with respect toisless
. If any of the arguments ismissing
, returnmissing
. See also themaximum
function to take the maximum element from a collection.
Examples
julia> max(2, 5, 1)5julia> max(5, missing, 6)missing
Base.minmax
—Functionminmax(x, y)
Return(min(x,y), max(x,y))
.
See alsoextrema
that returns(minimum(x), maximum(x))
.
Examples
julia> minmax('c','b')('b', 'c')
Base.clamp
—Functionclamp(x, lo, hi)
Returnx
iflo <= x <= hi
. Ifx > hi
, returnhi
. Ifx < lo
, returnlo
. Arguments are promoted to a common type.
missing
as the first argument requires at least Julia 1.3.
Examples
julia> clamp.([pi, 1.0, big(10)], 2.0, 9.0)3-element Vector{BigFloat}: 3.141592653589793238462643383279502884197169399375105820974944592307816406286198 2.0 9.0julia> clamp.([11, 8, 5], 10, 6) # an example where lo > hi3-element Vector{Int64}: 6 6 10
clamp(x, T)::T
Clampx
betweentypemin(T)
andtypemax(T)
and convert the result to typeT
.
See alsotrunc
.
Examples
julia> clamp(200, Int8)127julia> clamp(-200, Int8)-128julia> trunc(Int, 4pi^2)39
clamp(x::Integer, r::AbstractUnitRange)
Clampx
to lie within ranger
.
This method requires at least Julia 1.6.
Base.clamp!
—Functionclamp!(array::AbstractArray, lo, hi)
Restrict values inarray
to the specified range, in-place. See alsoclamp
.
missing
entries inarray
require at least Julia 1.3.
Examples
julia> row = collect(-4:4)';julia> clamp!(row, 0, Inf)1×9 adjoint(::Vector{Int64}) with eltype Int64: 0 0 0 0 0 1 2 3 4julia> clamp.((-4:4)', 0, Inf)1×9 Matrix{Float64}: 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0
Base.abs
—Functionabs(x)
The absolute value ofx
.
Whenabs
is applied to signed integers, overflow may occur, resulting in the return of a negative value. This overflow occurs only whenabs
is applied to the minimum representable value of a signed integer. That is, whenx == typemin(typeof(x))
,abs(x) == x < 0
, not-x
as might be expected.
Examples
julia> abs(-3)3julia> abs(1 + im)1.4142135623730951julia> abs.(Int8[-128 -127 -126 0 126 127]) # overflow at typemin(Int8)1×6 Matrix{Int8}: -128 127 126 0 126 127julia> maximum(abs, [1, -2, 3, -4])4
Base.Checked
—ModuleChecked
The Checked module provides arithmetic functions for the built-in signed and unsigned Integer types which throw an error when an overflow occurs. They are named likechecked_sub
,checked_div
, etc. In addition,add_with_overflow
,sub_with_overflow
,mul_with_overflow
return both the unchecked results and a boolean value denoting the presence of an overflow.
Base.Checked.checked_abs
—FunctionBase.checked_abs(x)
Calculatesabs(x)
, checking for overflow errors where applicable. For example, standard two's complement signed integers (e.g.Int
) cannot representabs(typemin(Int))
, thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_neg
—FunctionBase.checked_neg(x)
Calculates-x
, checking for overflow errors where applicable. For example, standard two's complement signed integers (e.g.Int
) cannot represent-typemin(Int)
, thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_add
—FunctionBase.checked_add(x, y)
Calculatesx+y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_sub
—FunctionBase.checked_sub(x, y)
Calculatesx-y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_mul
—FunctionBase.checked_mul(x, y)
Calculatesx*y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_div
—FunctionBase.checked_div(x, y)
Calculatesdiv(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_rem
—FunctionBase.checked_rem(x, y)
Calculatesx%y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_fld
—FunctionBase.checked_fld(x, y)
Calculatesfld(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_mod
—FunctionBase.checked_mod(x, y)
Calculatesmod(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_cld
—FunctionBase.checked_cld(x, y)
Calculatescld(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_pow
—FunctionBase.checked_pow(x, y)
Calculates^(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.add_with_overflow
—FunctionBase.add_with_overflow(x, y) -> (r, f)
Calculatesr = x+y
, with the flagf
indicating whether overflow has occurred.
Base.Checked.sub_with_overflow
—FunctionBase.sub_with_overflow(x, y) -> (r, f)
Calculatesr = x-y
, with the flagf
indicating whether overflow has occurred.
Base.Checked.mul_with_overflow
—FunctionBase.mul_with_overflow(x, y) -> (r, f)
Calculatesr = x*y
, with the flagf
indicating whether overflow has occurred.
Base.abs2
—Functionabs2(x)
Squared absolute value ofx
.
This can be faster thanabs(x)^2
, especially for complex numbers whereabs(x)
requires a square root viahypot
.
Examples
julia> abs2(-3)9julia> abs2(3.0 + 4.0im)25.0julia> sum(abs2, [1+2im, 3+4im]) # LinearAlgebra.norm(x)^230
Base.copysign
—Functioncopysign(x, y) -> z
Returnz
which has the magnitude ofx
and the same sign asy
.
Examples
julia> copysign(1, -2)-1julia> copysign(-1, 2)1
Base.sign
—Functionsign(x)
Return zero ifx==0
and$x/|x|$ otherwise (i.e., ±1 for realx
).
See alsosignbit
,zero
,copysign
,flipsign
.
Examples
julia> sign(-4.0)-1.0julia> sign(99)1julia> sign(-0.0)-0.0julia> sign(0 + im)0.0 + 1.0im
Base.signbit
—Functionsignbit(x)
Returntrue
if the value of the sign ofx
is negative, otherwisefalse
.
Examples
julia> signbit(-4)truejulia> signbit(5)falsejulia> signbit(5.5)falsejulia> signbit(-4.1)true
Base.flipsign
—Functionflipsign(x, y)
Returnx
with its sign flipped ify
is negative. For exampleabs(x) = flipsign(x,x)
.
Examples
julia> flipsign(5, 3)5julia> flipsign(5, -3)-5
Base.sqrt
—Methodsqrt(x)
Return$\sqrt{x}$.
ThrowsDomainError
for negativeReal
arguments. Use complex negative arguments instead. Note thatsqrt
has a branch cut along the negative real axis.
The prefix operator√
is equivalent tosqrt
.
See also:hypot
.
Examples
julia> sqrt(big(81))9.0julia> sqrt(big(-81))ERROR: DomainError with -81.0:NaN result for non-NaN input.Stacktrace: [1] sqrt(::BigFloat) at ./mpfr.jl:501[...]julia> sqrt(big(complex(-81)))0.0 + 9.0imjulia> sqrt(-81 - 0.0im) # -0.0im is below the branch cut0.0 - 9.0imjulia> .√(1:4)4-element Vector{Float64}: 1.0 1.4142135623730951 1.7320508075688772 2.0
Base.isqrt
—Functionisqrt(n::Integer)
Integer square root: the largest integerm
such thatm*m <= n
.
julia> isqrt(5)2
Base.Math.cbrt
—Methodcbrt(x::Real)
Return the cube root ofx
, i.e.$x^{1/3}$. Negative values are accepted (returning the negative real root when$x < 0$).
The prefix operator∛
is equivalent tocbrt
.
Examples
julia> cbrt(big(27))3.0julia> cbrt(big(-27))-3.0
Base.real
—Functionreal(z)
Return the real part of the complex numberz
.
See also:imag
,reim
,complex
,isreal
,Real
.
Examples
julia> real(1 + 3im)1
real(T::Type)
Return the type that represents the real part of a value of typeT
. e.g: forT == Complex{R}
, returnsR
. Equivalent totypeof(real(zero(T)))
.
Examples
julia> real(Complex{Int})Int64julia> real(Float64)Float64
real(A::AbstractArray)
Return an array containing the real part of each entry in arrayA
.
Equivalent toreal.(A)
, except that wheneltype(A) <: Real
A
is returned without copying, and that whenA
has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> real([1, 2im, 3 + 4im])3-element Vector{Int64}: 1 0 3julia> real(fill(2 - im))0-dimensional Array{Int64, 0}:2
Base.imag
—Functionimag(z)
Return the imaginary part of the complex numberz
.
See also:conj
,reim
,adjoint
,angle
.
Examples
julia> imag(1 + 3im)3
imag(A::AbstractArray)
Return an array containing the imaginary part of each entry in arrayA
.
Equivalent toimag.(A)
, except that whenA
has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> imag([1, 2im, 3 + 4im])3-element Vector{Int64}: 0 2 4julia> imag(fill(2 - im))0-dimensional Array{Int64, 0}:-1
Base.reim
—Functionreim(z)
Return a tuple of the real and imaginary parts of the complex numberz
.
Examples
julia> reim(1 + 3im)(1, 3)
reim(A::AbstractArray)
Return a tuple of two arrays containing respectively the real and the imaginary part of each entry inA
.
Equivalent to(real.(A), imag.(A))
, except that wheneltype(A) <: Real
A
is returned without copying to represent the real part, and that whenA
has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> reim([1, 2im, 3 + 4im])([1, 0, 3], [0, 2, 4])julia> reim(fill(2 - im))(fill(2), fill(-1))
Base.conj
—Functionconj(z)
Compute the complex conjugate of a complex numberz
.
Examples
julia> conj(1 + 3im)1 - 3im
conj(A::AbstractArray)
Return an array containing the complex conjugate of each entry in arrayA
.
Equivalent toconj.(A)
, except that wheneltype(A) <: Real
A
is returned without copying, and that whenA
has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> conj([1, 2im, 3 + 4im])3-element Vector{Complex{Int64}}: 1 + 0im 0 - 2im 3 - 4imjulia> conj(fill(2 - im))0-dimensional Array{Complex{Int64}, 0}:2 + 1im
Base.angle
—Functionangle(z)
Compute the phase angle in radians of a complex numberz
.
Returns a number-pi ≤ angle(z) ≤ pi
, and is thus discontinuous along the negative real axis.
Examples
julia> rad2deg(angle(1 + im))45.0julia> rad2deg(angle(1 - im))-45.0julia> rad2deg(angle(-1 + 1e-20im))180.0julia> rad2deg(angle(-1 - 1e-20im))-180.0
Base.cis
—Functioncis(x)
More efficient method forexp(im*x)
by using Euler's formula:$\cos(x) + i \sin(x) = \exp(i x)$.
See alsocispi
,sincos
,exp
,angle
.
Examples
julia> cis(π) ≈ -1true
Base.cispi
—Functioncispi(x)
More accurate method forcis(pi*x)
(especially for largex
).
See alsocis
,sincospi
,exp
,angle
.
Examples
julia> cispi(10000)1.0 + 0.0imjulia> cispi(0.25 + 1im)0.030556854645954562 + 0.03055685464595456im
This function requires Julia 1.6 or later.
Base.binomial
—Functionbinomial(n::Integer, k::Integer)
Thebinomial coefficient$\binom{n}{k}$, being the coefficient of the$k$th term in the polynomial expansion of$(1+x)^n$.
If$n$ is non-negative, then it is the number of ways to choosek
out ofn
items:
\[\binom{n}{k} = \frac{n!}{k! (n-k)!}\]
where$n!$ is thefactorial
function.
If$n$ is negative, then it is defined in terms of the identity
\[\binom{n}{k} = (-1)^k \binom{k-n-1}{k}\]
See alsofactorial
.
Examples
julia> binomial(5, 3)10julia> factorial(5) ÷ (factorial(5-3) * factorial(3))10julia> binomial(-5, 3)-35
External links
binomial(x::Number, k::Integer)
The generalized binomial coefficient, defined fork ≥ 0
by the polynomial
\[\frac{1}{k!} \prod_{j=0}^{k-1} (x - j)\]
Whenk < 0
it returns zero.
For the case of integerx
, this is equivalent to the ordinary integer binomial coefficient
\[\binom{n}{k} = \frac{n!}{k! (n-k)!}\]
Further generalizations to non-integerk
are mathematically possible, but involve the Gamma function and/or the beta function, which are not provided by the Julia standard library but are available in external packages such asSpecialFunctions.jl.
External links
Base.factorial
—Functionfactorial(n::Integer)
Factorial ofn
. Ifn
is anInteger
, the factorial is computed as an integer (promoted to at least 64 bits). Note that this may overflow ifn
is not small, but you can usefactorial(big(n))
to compute the result exactly in arbitrary precision.
See alsobinomial
.
Examples
julia> factorial(6)720julia> factorial(21)ERROR: OverflowError: 21 is too large to look up in the table; consider using `factorial(big(21))` insteadStacktrace:[...]julia> factorial(big(21))51090942171709440000
External links
Base.gcd
—Functiongcd(x, y...)
Greatest common (positive) divisor (or zero if all arguments are zero). The arguments may be integer and rational numbers.
Rational arguments require Julia 1.4 or later.
Examples
julia> gcd(6, 9)3julia> gcd(6, -9)3julia> gcd(6, 0)6julia> gcd(0, 0)0julia> gcd(1//3, 2//3)1//3julia> gcd(1//3, -2//3)1//3julia> gcd(1//3, 2)1//3julia> gcd(0, 0, 10, 15)5
Base.lcm
—Functionlcm(x, y...)
Least common (positive) multiple (or zero if any argument is zero). The arguments may be integer and rational numbers.
Rational arguments require Julia 1.4 or later.
Examples
julia> lcm(2, 3)6julia> lcm(-2, 3)6julia> lcm(0, 3)0julia> lcm(0, 0)0julia> lcm(1//3, 2//3)2//3julia> lcm(1//3, -2//3)2//3julia> lcm(1//3, 2)2//1julia> lcm(1, 3, 5, 7)105
Base.gcdx
—Functiongcdx(a, b)
Computes the greatest common (positive) divisor ofa
andb
and their Bézout coefficients, i.e. the integer coefficientsu
andv
that satisfy$ua+vb = d = gcd(a, b)$.$gcdx(a, b)$ returns$(d, u, v)$.
The arguments may be integer and rational numbers.
Rational arguments require Julia 1.4 or later.
Examples
julia> gcdx(12, 42)(6, -3, 1)julia> gcdx(240, 46)(2, -9, 47)
Bézout coefficients arenot uniquely defined.gcdx
returns the minimal Bézout coefficients that are computed by the extended Euclidean algorithm. (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.) For signed integers, these coefficientsu
andv
are minimal in the sense that$|u| < |b/d|$ and$|v| < |a/d|$. Furthermore, the signs ofu
andv
are chosen so thatd
is positive. For unsigned integers, the coefficientsu
andv
might be near theirtypemax
, and the identity then holds only via the unsigned integers' modulo arithmetic.
Base.ispow2
—Functionispow2(n::Number) -> Bool
Test whethern
is an integer power of two.
See alsocount_ones
,prevpow
,nextpow
.
Examples
julia> ispow2(4)truejulia> ispow2(5)falsejulia> ispow2(4.5)falsejulia> ispow2(0.25)truejulia> ispow2(1//8)true
Support for non-Integer
arguments was added in Julia 1.6.
Base.nextpow
—Functionnextpow(a, x)
The smallesta^n
not less thanx
, wheren
is a non-negative integer.a
must be greater than 1, andx
must be greater than 0.
See alsoprevpow
.
Examples
julia> nextpow(2, 7)8julia> nextpow(2, 9)16julia> nextpow(5, 20)25julia> nextpow(4, 16)16
Base.prevpow
—Functionprevpow(a, x)
The largesta^n
not greater thanx
, wheren
is a non-negative integer.a
must be greater than 1, andx
must not be less than 1.
Examples
julia> prevpow(2, 7)4julia> prevpow(2, 9)8julia> prevpow(5, 20)5julia> prevpow(4, 16)16
Base.nextprod
—Functionnextprod(factors::Union{Tuple,AbstractVector}, n)
Next integer greater than or equal ton
that can be written as$\prod k_i^{p_i}$ for integers$p_1$,$p_2$, etcetera, for factors$k_i$ infactors
.
Examples
julia> nextprod((2, 3), 105)108julia> 2^2 * 3^3108
The method that accepts a tuple requires Julia 1.6 or later.
Base.invmod
—Functioninvmod(n::Integer, m::Integer)
Take the inverse ofn
modulom
:y
such that$n y = 1 \pmod m$, and$div(y,m) = 0$. This will throw an error if$m = 0$, or if$gcd(n,m) \neq 1$.
Examples
julia> invmod(2, 5)3julia> invmod(2, 3)2julia> invmod(5, 6)5
invmod(n::Integer, T) where {T <: Base.BitInteger}invmod(n::T) where {T <: Base.BitInteger}
Compute the modular inverse ofn
in the integer ring of typeT
, i.e. modulo2^N
whereN = 8*sizeof(T)
(e.g.N = 32
forInt32
). In other words these methods satisfy the following identities:
n * invmod(n) == 1(n * invmod(n, T)) % T == 1(n % T) * invmod(n, T) == 1
Note that*
here is modular multiplication in the integer ring,T
.
Specifying the modulus implied by an integer type as an explicit value is often inconvenient since the modulus is by definition too big to be represented by the type.
The modular inverse is computed much more efficiently than the general case using the algorithm described in https://arxiv.org/pdf/2204.04342.pdf.
Theinvmod(n)
andinvmod(n, T)
methods require Julia 1.11 or later.
Base.powermod
—Functionpowermod(x::Integer, p::Integer, m)
Compute$x^p \pmod m$.
Examples
julia> powermod(2, 6, 5)4julia> mod(2^6, 5)4julia> powermod(5, 2, 20)5julia> powermod(5, 2, 19)6julia> powermod(5, 3, 19)11
Base.ndigits
—Functionndigits(n::Integer; base::Integer=10, pad::Integer=1)
Compute the number of digits in integern
written in basebase
(base
must not be in[-1, 0, 1]
), optionally padded with zeros to a specified size (the result will never be less thanpad
).
See alsodigits
,count_ones
.
Examples
julia> ndigits(0)1julia> ndigits(12345)5julia> ndigits(1022, base=16)3julia> string(1022, base=16)"3fe"julia> ndigits(123, pad=5)5julia> ndigits(-123)3
Base.add_sum
—FunctionBase.add_sum(x, y)
The reduction operator used insum
. The main difference from+
is that small integers are promoted toInt
/UInt
.
Base.widemul
—Functionwidemul(x, y)
Multiplyx
andy
, giving the result as a larger type.
See alsopromote
,Base.add_sum
.
Examples
julia> widemul(Float32(3.0), 4.0) isa BigFloattruejulia> typemax(Int8) * typemax(Int8)1julia> widemul(typemax(Int8), typemax(Int8)) # == 127^216129
Base.Math.evalpoly
—Functionevalpoly(x, p)
Evaluate the polynomial$\sum_k x^{k-1} p[k]$ for the coefficientsp[1]
,p[2]
, ...; that is, the coefficients are given in ascending order by power ofx
. Loops are unrolled at compile time if the number of coefficients is statically known, i.e. whenp
is aTuple
. This function generates efficient code using Horner's method ifx
is real, or using a Goertzel-like[DK62] algorithm ifx
is complex.
This function requires Julia 1.4 or later.
Examples
julia> evalpoly(2, (1, 2, 3))17
Base.Math.@evalpoly
—Macro@evalpoly(z, c...)
Evaluate the polynomial$\sum_k z^{k-1} c[k]$ for the coefficientsc[1]
,c[2]
, ...; that is, the coefficients are given in ascending order by power ofz
. This macro expands to efficient inline code that uses either Horner's method or, for complexz
, a more efficient Goertzel-like algorithm.
See alsoevalpoly
.
Examples
julia> @evalpoly(3, 1, 0, 1)10julia> @evalpoly(2, 1, 0, 1)5julia> @evalpoly(2, 1, 1, 1)7
Base.FastMath.@fastmath
—Macro@fastmath expr
Execute a transformed version of the expression, which calls functions that may violate strict IEEE semantics. This allows the fastest possible operation, but results are undefined – be careful when doing this, as it may change numerical results.
This sets theLLVM Fast-Math flags, and corresponds to the-ffast-math
option in clang. Seethe notes on performance annotations for more details.
Examples
julia> @fastmath 1+23julia> @fastmath(sin(3))0.1411200080598672
Some unicode characters can be used to define new binary operators that support infix notation. For example⊗(x,y) = kron(x,y)
defines the⊗
(otimes) function to be the Kronecker product, and one can call it as binary operator using infix syntax:C = A ⊗ B
as well as with the usual prefix syntaxC = ⊗(A,B)
.
Other characters that support such extensions include \odot⊙
and \oplus⊕
The complete list is in the parser code:https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm
Those that are parsed like*
(in terms of precedence) include* / ÷ % & ⋅ ∘ × |\\| ∩ ∧ ⊗ ⊘ ⊙ ⊚ ⊛ ⊠ ⊡ ⊓ ∗ ∙ ∤ ⅋ ≀ ⊼ ⋄ ⋆ ⋇ ⋉ ⋊ ⋋ ⋌ ⋏ ⋒ ⟑ ⦸ ⦼ ⦾ ⦿ ⧶ ⧷ ⨇ ⨰ ⨱ ⨲ ⨳ ⨴ ⨵ ⨶ ⨷ ⨸ ⨻ ⨼ ⨽ ⩀ ⩃ ⩄ ⩋ ⩍ ⩎ ⩑ ⩓ ⩕ ⩘ ⩚ ⩜ ⩞ ⩟ ⩠ ⫛ ⊍ ▷ ⨝ ⟕ ⟖ ⟗
and those that are parsed like+
include+ - |\|| ⊕ ⊖ ⊞ ⊟ |++| ∪ ∨ ⊔ ± ∓ ∔ ∸ ≏ ⊎ ⊻ ⊽ ⋎ ⋓ ⟇ ⧺ ⧻ ⨈ ⨢ ⨣ ⨤ ⨥ ⨦ ⨧ ⨨ ⨩ ⨪ ⨫ ⨬ ⨭ ⨮ ⨹ ⨺ ⩁ ⩂ ⩅ ⩊ ⩌ ⩏ ⩐ ⩒ ⩔ ⩖ ⩗ ⩛ ⩝ ⩡ ⩢ ⩣
There are many others that are related to arrows, comparisons, and powers.
Settings
This document was generated withDocumenter.jl version 1.8.0 onWednesday 9 July 2025. Using Julia version 1.11.6.