jax.numpy.sum
Contents
jax.numpy.sum#
- jax.numpy.sum(a,axis=None,dtype=None,out=None,keepdims=False,initial=None,where=None,promote_integers=True)[source]#
Sum of the elements of the array over a given axis.
JAX implementation of
numpy.sum().- Parameters:
a (ArrayLike) – Input array.
axis (Axis) – int or array, default=None. Axis along which the sum to be computed.If None, the sum is computed along all the axes.
dtype (DTypeLike |None) – The type of the output array. Default=None.
out (None) – Unused by JAX
keepdims (bool) – bool, default=False. If true, reduced axes are left in the resultwith size 1.
initial (ArrayLike |None) – int or array, Default=None. Initial value for the sum.
where (ArrayLike |None) – int or array, default=None. The elements to be used in the sum. Arrayshould be broadcast compatible to the input.
promote_integers (bool) – bool, default=True. If True, then integer inputs will bepromoted to the widest available integer dtype, following numpy’s behavior.If False, the result will have the same dtype as the input.
promote_integersis ignored ifdtypeis specified.
- Returns:
An array of the sum along the given axis.
- Return type:
See also
jax.numpy.prod(): Compute the product of array elements over a givenaxis.jax.numpy.max(): Compute the maximum of array elements over given axis.jax.numpy.min(): Compute the minimum of array elements over given axis.
Examples
By default, the sum is computed along all the axes.
>>>x=jnp.array([[1,3,4,2],...[5,2,6,3],...[8,1,3,9]])>>>jnp.sum(x)Array(47, dtype=int32)
If
axis=1, the sum is computed along axis 1.>>>jnp.sum(x,axis=1)Array([10, 16, 21], dtype=int32)
If
keepdims=True,ndimof the output is equal to that of the input.>>>jnp.sum(x,axis=1,keepdims=True)Array([[10], [16], [21]], dtype=int32)
To include only specific elements in the sum, you can use
where.>>>where=jnp.array([[0,0,1,0],...[0,0,1,1],...[1,1,1,0]],dtype=bool)>>>jnp.sum(x,axis=1,keepdims=True,where=where)Array([[ 4], [ 9], [12]], dtype=int32)>>>where=jnp.array([[False],...[False],...[False]])>>>jnp.sum(x,axis=0,keepdims=True,where=where)Array([[0, 0, 0, 0]], dtype=int32)
