jax.numpy.min
Contents
jax.numpy.min#
- jax.numpy.min(a,axis=None,out=None,keepdims=False,initial=None,where=None)[source]#
Return the minimum of array elements along a given axis.
JAX implementation of
numpy.min().- Parameters:
a (ArrayLike) – Input array.
axis (Axis) – int or array, default=None. Axis along which the minimum to be computed.If None, the minimum is computed along all the axes.
keepdims (bool) – bool, default=False. If true, reduced axes are left in the resultwith size 1.
initial (ArrayLike |None) – int or array, Default=None. Initial value for the minimum.
where (ArrayLike |None) – int or array, default=None. The elements to be used in the minimum.Array should be broadcast compatible to the input.
initialmust bespecified whenwhereis used.out (None) – Unused by JAX.
- Returns:
An array of minimum values along the given axis.
- Return type:
See also
jax.numpy.max(): Compute the maximum of array elements along a givenaxis.jax.numpy.sum(): Compute the sum of array elements along a given axis.jax.numpy.prod(): Compute the product of array elements along a givenaxis.
Examples
By default, the minimum is computed along all the axes.
>>>x=jnp.array([[2,5,1,6],...[3,-7,-2,4],...[8,-4,1,-3]])>>>jnp.min(x)Array(-7, dtype=int32)
If
axis=1, the minimum is computed along axis 1.>>>jnp.min(x,axis=1)Array([ 1, -7, -4], dtype=int32)
If
keepdims=True,ndimof the output will be same of that of the input.>>>jnp.min(x,axis=1,keepdims=True)Array([[ 1], [-7], [-4]], dtype=int32)
To include only specific elements in computing the minimum, you can use
where.wherecan either have same dimension as input.>>>where=jnp.array([[1,0,1,0],...[0,0,1,1],...[1,1,1,0]],dtype=bool)>>>jnp.min(x,axis=1,keepdims=True,initial=0,where=where)Array([[ 0], [-2], [-4]], dtype=int32)
or must be broadcast compatible with input.
>>>where=jnp.array([[False],...[False],...[False]])>>>jnp.min(x,axis=0,keepdims=True,initial=0,where=where)Array([[0, 0, 0, 0]], dtype=int32)
