jax.numpy.fft.ifft
Contents
jax.numpy.fft.ifft#
- jax.numpy.fft.ifft(a,n=None,axis=-1,norm=None)[source]#
Compute a one-dimensional inverse discrete Fourier transform.
JAX implementation of
numpy.fft.ifft().- Parameters:
a (ArrayLike) – input array
n (int |None) – int. Specifies the dimension of the result along
axis. If not specified,it will default to the dimension ofaalongaxis.axis (int) – int, default=-1. Specifies the axis along which the transform is computed.If not specified, the transform is computed along axis -1.
norm (str |None) – string. The normalization mode. “backward”, “ortho” and “forward” aresupported.
- Returns:
An array containing the one-dimensional discrete Fourier transform of
a.- Return type:
See also
jax.numpy.fft.fft(): Computes a one-dimensional discrete Fouriertransform.jax.numpy.fft.fftn(): Computes a multidimensional discrete Fouriertransform.jax.numpy.fft.ifftn(): Computes a multidimensional inverse of discreteFourier transform.
Examples
jnp.fft.ifftcomputes the transform alongaxis-1by default.>>>x=jnp.array([[3,1,4,6],...[2,5,7,1]])>>>jnp.fft.ifft(x)Array([[ 3.5 +0.j , -0.25-1.25j, 0. +0.j , -0.25+1.25j], [ 3.75+0.j , -1.25+1.j , 0.75+0.j , -1.25-1.j ]], dtype=complex64)
When
n=5, dimension of the transform along axis -1 will be5anddimension along other axes will be the same as that of input.>>>withjnp.printoptions(precision=2,suppress=True):...print(jnp.fft.ifft(x,n=5))[[ 2.8 +0.j -0.96-0.04j 1.06+0.5j 1.06-0.5j -0.96+0.04j] [ 3. +0.j -0.59+1.66j 0.09-0.55j 0.09+0.55j -0.59-1.66j]]
When
n=3andaxis=0, dimension of the transform alongaxis0willbe3and dimension along other axes will be same as that of input.>>>withjnp.printoptions(precision=2,suppress=True):...print(jnp.fft.ifft(x,n=3,axis=0))[[ 1.67+0.j 2. +0.j 3.67+0.j 2.33+0.j ] [ 0.67+0.58j -0.5 +1.44j 0.17+2.02j 1.83+0.29j] [ 0.67-0.58j -0.5 -1.44j 0.17-2.02j 1.83-0.29j]]
