jax.numpy.quantile
Contents
jax.numpy.quantile#
- jax.numpy.quantile(a,q,axis=None,out=None,overwrite_input=False,method='linear',keepdims=False,*,interpolation=Deprecated)[source]#
Compute the quantile of the data along the specified axis.
JAX implementation of
numpy.quantile().- Parameters:
a (ArrayLike) – N-dimensional array input.
q (ArrayLike) – scalar or 1-dimensional array specifying the desired quantiles.
qshould contain floating-point values between0.0and1.0.axis (int |tuple[int,...]|None) – optional axis or tuple of axes along which to compute the quantile
out (None) – not implemented by JAX; will error if not None
overwrite_input (bool) – not implemented by JAX; will error if not False
method (str) – specify the interpolation method to use. Options are one of
["linear","lower","higher","midpoint","nearest"].default islinear.keepdims (bool) – if True, then the returned array will have the same number ofdimensions as the input. Default is False.
interpolation (DeprecatedArg)
- Returns:
An array containing the specified quantiles along the specified axes.
- Return type:
See also
jax.numpy.nanquantile(): compute the quantile while ignoring NaNsjax.numpy.percentile(): compute the percentile (0-100)
Examples
Computing the median and quartiles of an array, with linear interpolation:
>>>x=jnp.arange(10)>>>q=jnp.array([0.25,0.5,0.75])>>>jnp.quantile(x,q)Array([2.25, 4.5 , 6.75], dtype=float32)
Computing the quartiles using nearest-value interpolation:
>>>jnp.quantile(x,q,method='nearest')Array([2., 4., 7.], dtype=float32)
