jax.numpy.percentile
Contents
jax.numpy.percentile#
- jax.numpy.percentile(a,q,axis=None,out=None,overwrite_input=False,method='linear',keepdims=False,*,interpolation=Deprecated)[source]#
Compute the percentile of the data along the specified axis.
JAX implementation of
numpy.percentile().- Parameters:
a (ArrayLike) – N-dimensional array input.
q (ArrayLike) – scalar or 1-dimensional array specifying the desired quantiles.
qshould contain integer or floating point values between0and100.axis (int |tuple[int,...]|None) – optional axis or tuple of axes along which to compute the quantile
out (None) – not implemented by JAX; will error if not None
overwrite_input (bool) – not implemented by JAX; will error if not False
method (str) – specify the interpolation method to use. Options are one of
["linear","lower","higher","midpoint","nearest"].default islinear.keepdims (bool) – if True, then the returned array will have the same number ofdimensions as the input. Default is False.
interpolation (DeprecatedArg)
- Returns:
An array containing the specified percentiles along the specified axes.
- Return type:
See also
jax.numpy.quantile(): compute the quantile (0.0-1.0)jax.numpy.nanpercentile(): compute the percentile while ignoring NaNs
Examples
Computing the median and quartiles of a 1D array:
>>>x=jnp.array([0,1,2,3,4,5,6])>>>q=jnp.array([25,50,75])>>>jnp.percentile(x,q)Array([1.5, 3. , 4.5], dtype=float32)
Computing the same percentiles with nearest rather than linear interpolation:
>>>jnp.percentile(x,q,method='nearest')Array([1., 3., 4.], dtype=float32)
