jax.numpy.linalg.vecdot
Contents
jax.numpy.linalg.vecdot#
- jax.numpy.linalg.vecdot(x1,x2,/,*,axis=-1,precision=None,preferred_element_type=None)[source]#
Compute the (batched) vector conjugate dot product of two arrays.
JAX implementation of
numpy.linalg.vecdot().- Parameters:
x1 (ArrayLike) – left-hand side array.
x2 (ArrayLike) – right-hand side array. Size of
x2[axis]must match size ofx1[axis],and remaining dimensions must be broadcast-compatible.axis (int) – axis along which to compute the dot product (default: -1)
precision (lax.PrecisionLike) – either
None(default), which means the default precision forthe backend, aPrecisionenum value (Precision.DEFAULT,Precision.HIGHorPrecision.HIGHEST) or a tuple of twosuch values indicating precision ofx1andx2.preferred_element_type (DTypeLike |None) – either
None(default), which means the defaultaccumulation type for the input types, or a datatype, indicating toaccumulate results to and return a result with that datatype.
- Returns:
array containing the conjugate dot product of
x1andx2alongaxis.The non-contracted dimensions are broadcast together.- Return type:
See also
jax.numpy.vecdot(): similar API in thejax.numpynamespace.jax.numpy.linalg.matmul(): matrix multiplication.jax.numpy.linalg.tensordot(): general tensor dot product.
Examples
Vector dot product of two 1D arrays:
>>>x1=jnp.array([1,2,3])>>>x2=jnp.array([4,5,6])>>>jnp.linalg.vecdot(x1,x2)Array(32, dtype=int32)
Batched vector dot product of two 2D arrays:
>>>x1=jnp.array([[1,2,3],...[4,5,6]])>>>x2=jnp.array([[2,3,4]])>>>jnp.linalg.vecdot(x1,x2,axis=-1)Array([20, 47], dtype=int32)
