jax.numpy.fft.irfft2
Contents
jax.numpy.fft.irfft2#
- jax.numpy.fft.irfft2(a,s=None,axes=(-2,-1),norm=None)[source]#
Compute a real-valued two-dimensional inverse discrete Fourier transform.
JAX implementation of
numpy.fft.irfft2().- Parameters:
a (ArrayLike) – input array. Must have
a.ndim>=2.s (Shape |None) – optional length-2 sequence of integers. Specifies the size of the outputin each specified axis. If not specified, the dimension of output alongaxis
axes[1]is2*(m-1),mis the size of input along axisaxes[1]and the dimension along other axes will be the same as that ofinput.axes (Sequence[int]) – optional length-2 sequence of integers, default=(-2,-1). Specifies theaxes along which the transform is computed.
norm (str |None) – string, default=”backward”. The normalization mode. “backward”, “ortho”and “forward” are supported.
- Returns:
A real-valued array containing the two-dimensional inverse discrete Fouriertransform of
a.- Return type:
See also
jax.numpy.fft.rfft2(): Computes a two-dimensional discrete Fouriertransform of a real-valued array.jax.numpy.fft.irfft(): Computes a real-valued one-dimensional inversediscrete Fourier transform.jax.numpy.fft.irfftn(): Computes a real-valued multidimensional inversediscrete Fourier transform.
Examples
jnp.fft.irfft2computes the transform along the last two axes by default.>>>x=jnp.array([[[1,3,5],...[2,4,6]],...[[7,9,11],...[8,10,12]]])>>>jnp.fft.irfft2(x)Array([[[ 3.5, -1. , 0. , -1. ], [-0.5, 0. , 0. , 0. ]], [[ 9.5, -1. , 0. , -1. ], [-0.5, 0. , 0. , 0. ]]], dtype=float32)
When
s=[3,3], dimension of the transform alongaxes(-2,-1)will be(3,3)and dimension along other axes will be the same as that of input.>>>withjnp.printoptions(precision=2,suppress=True):...jnp.fft.irfft2(x,s=[3,3])Array([[[ 1.89, -0.44, -0.44], [ 0.22, -0.78, 0.56], [ 0.22, 0.56, -0.78]], [[ 5.89, -0.44, -0.44], [ 1.22, -1.78, 1.56], [ 1.22, 1.56, -1.78]]], dtype=float32)
When
s=[2,3]andaxes=(0,1), shape of the transform alongaxes(0,1)will be(2,3)and dimension along other axes will besame as that of input.>>>withjnp.printoptions(precision=2,suppress=True):...jnp.fft.irfft2(x,s=[2,3],axes=(0,1))Array([[[ 4.67, 6.67, 8.67], [-0.33, -0.33, -0.33], [-0.33, -0.33, -0.33]], [[-3. , -3. , -3. ], [ 0. , 0. , 0. ], [ 0. , 0. , 0. ]]], dtype=float32)
