jax.linearize
Contents
jax.linearize#
- jax.linearize(fun:Callable,*primals,has_aux:Literal[False]=False)→tuple[Any,Callable][source]#
- jax.linearize(fun:Callable,*primals,has_aux:Literal[True])→tuple[Any,Callable,Any]
Produces a linear approximation to
funusingjvp()and partial eval.- Parameters:
fun – Function to be differentiated. Its arguments should be arrays, scalars,or standard Python containers of arrays or scalars. It should return anarray, scalar, or standard python container of arrays or scalars.
primals – The primal values at which the Jacobian of
funshould beevaluated. Should be a tuple of arrays, scalar, or standard Pythoncontainer thereof. The length of the tuple is equal to the number ofpositional parameters offun.has_aux – Optional, bool. Indicates whether
funreturns a pair where the firstelement is considered the output of the mathematical function to be linearized,and the second is auxiliary data. Default False.
- Returns:
If
has_auxisFalse, returns a pair where the first element is the value off(*primals)and the second element is a function that evaluates the(forward-mode) Jacobian-vector product offunevaluated atprimalswithoutre-doing the linearization work. Ifhas_auxisTrue, returns a(primals_out,lin_fn,aux)tuple whereauxis the auxiliary data returned byfun.
In terms of values computed,
linearize()behaves much like a curriedjvp(), where these two code blocks compute the same values:y,out_tangent=jax.jvp(f,(x,),(in_tangent,))y,f_jvp=jax.linearize(f,x)out_tangent=f_jvp(in_tangent)
However, the difference is that
linearize()uses partial evaluationso that the functionfis not re-linearized on calls tof_jvp. Ingeneral that means the memory usage scales with the size of the computation,much like in reverse-mode. (Indeed,linearize()has a similarsignature tovjp()!)This function is mainly useful if you want to apply
f_jvpmultiple times,i.e. to evaluate a pushforward for many different input tangent vectors at thesame linearization point. Moreover if all the input tangent vectors are knownat once, it can be more efficient to vectorize usingvmap(), as in:pushfwd=partial(jvp,f,(x,))y,out_tangents=vmap(pushfwd,out_axes=(None,0))((in_tangents,))
By using
vmap()andjvp()together like this we avoid the stored-linearizationmemory cost that scales with the depth of the computation, which is incurredby bothlinearize()andvjp().Here’s a more complete example of using
linearize():>>>importjax>>>importjax.numpyasjnp>>>>>>deff(x):return3.*jnp.sin(x)+jnp.cos(x/2.)...>>>jax.jvp(f,(2.,),(3.,))(Array(3.2681944, dtype=float32, weak_type=True), Array(-5.007528, dtype=float32, weak_type=True))>>>y,f_jvp=jax.linearize(f,2.)>>>print(y)3.2681944>>>print(f_jvp(3.))-5.007528>>>print(f_jvp(4.))-6.676704
