#!/usr/bin/env python3# Copyright 2025, Gurobi Optimization, LLC# This example formulates and solves the following simple QP model:# minimize# x^2 + x*y + y^2 + y*z + z^2 + 2 x# subject to# x + 2 y + 3 z >= 4# x + y >= 1# x, y, z non-negative## It solves it once as a continuous model, and once as an integer model.importgurobipyasgpfromgurobipyimportGRB# Create a new modelm=gp.Model("qp")# Create variablesx=m.addVar(ub=1.0,name="x")y=m.addVar(ub=1.0,name="y")z=m.addVar(ub=1.0,name="z")# Set objective: x^2 + x*y + y^2 + y*z + z^2 + 2 xobj=x**2+x*y+y**2+y*z+z**2+2*xm.setObjective(obj)# Add constraint: x + 2 y + 3 z >= 4m.addConstr(x+2*y+3*z>=4,"c0")# Add constraint: x + y >= 1m.addConstr(x+y>=1,"c1")m.optimize()forvinm.getVars():print(f"{v.VarName}{v.X:g}")print(f"Obj:{m.ObjVal:g}")x.VType=GRB.INTEGERy.VType=GRB.INTEGERz.VType=GRB.INTEGERm.optimize()forvinm.getVars():print(f"{v.VarName}{v.X:g}")print(f"Obj:{m.ObjVal:g}")
Help and Feedback