Query public index to get nearest neighbors Stay organized with collections Save and categorize content based on your preferences.
After you've created and deployed the index, you can run queries to getthe nearest neighbors.
Here are some examples for a match query to find the top nearest neighbors usingthe k-nearest neighbors algorithm (k-NN).
Example queries for public endpoint
Python
To learn how to install or update the Vertex AI SDK for Python, seeInstall the Vertex AI SDK for Python. For more information, see thePython API reference documentation.
defvector_search_find_neighbors(project:str,location:str,index_endpoint_name:str,deployed_index_id:str,queries:List[List[float]],num_neighbors:int,)->List[ List[aiplatform.matching_engine.matching_engine_index_endpoint.MatchNeighbor]]:"""Query the vector search index. Args: project (str): Required. Project ID location (str): Required. The region name index_endpoint_name (str): Required. Index endpoint to run the query against. deployed_index_id (str): Required. The ID of the DeployedIndex to run the queries against. queries (List[List[float]]): Required. A list of queries. Each query is a list of floats, representing a single embedding. num_neighbors (int): Required. The number of neighbors to return. Returns: List[List[aiplatform.matching_engine.matching_engine_index_endpoint.MatchNeighbor]] - A list of nearest neighbors for each query. """#InitializetheVertexAIclientaiplatform.init(project=project,location=location)#Createtheindexendpointinstancefromanexistingendpoint.my_index_endpoint=aiplatform.MatchingEngineIndexEndpoint(index_endpoint_name=index_endpoint_name)#Querytheindexendpointforthenearestneighbors.returnmy_index_endpoint.find_neighbors(deployed_index_id=deployed_index_id,queries=queries,num_neighbors=num_neighbors,)Command-line
ThepublicEndpointDomainName listed below can be found atDeploy and is formatted as<number>.<region>-<number>.vdb.vertexai.goog.
$ curl -X POST -H "Content-Type: application/json" -H "Authorization: Bearer `gcloud auth print-access-token`" https://1957880287.us-central1-181224308459.vdb.vertexai.goog/v1/projects/181224308459/locations/us-central1/indexEndpoints/3370566089086861312:findNeighbors -d '{deployed_index_id: "test_index_public1", queries: [{datapoint: {datapoint_id: "0", feature_vector: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, neighbor_count: 5}]}' This curl example demonstrates how to call fromhttp(s) clients, although public endpoint supports dual protocol for restful andgrpc_cli.
$ curl -X POST -H "Content-Type: application/json" -H "Authorization: Bearer `gcloud auth print-access-token`" https://1957880287.us-central1-181224308459.vdb.vertexai.goog/v1/projects/${PROJECT_ID}/locations/us-central1/indexEndpoints/${INDEX_ENDPOINT_ID}:readIndexDatapoints -d '{deployed_index_id:"test_index_public1", ids: ["606431", "896688"]}'This curl example demonstrates how to query withtoken and numeric restricts.
$ curl -X POST -H "Content-Type: application/json" -H "Authorization: Bearer `gcloud auth print-access-token`" https://${PUBLIC_ENDPOINT_DOMAIN}/v1/projects/${PROJECT_ID}/locations/${LOCATION}/indexEndpoints/${INDEX_ENDPOINT_ID}:findNeighbors -d '{deployed_index_id:"${DEPLOYED_INDEX_ID}", queries: [{datapoint: {datapoint_id:"x", feature_vector: [1, 1], "sparse_embedding": {"values": [111.0,111.1,111.2], "dimensions": [10,20,30]}, numeric_restricts: [{namespace: "int-ns", value_int: -2, op: "GREATER"}, {namespace: "int-ns", value_int: 4, op: "LESS_EQUAL"}, {namespace: "int-ns", value_int: 0, op: "NOT_EQUAL"}], restricts: [{namespace: "color", allow_list: ["red"]}]}}]}'Console
Use these instructions to query an index deployed to a public endpoint from the console.
- In the Vertex AI section of the Google Cloud console, go to theDeploy and Use section. SelectVector Search.
- Select the index you want to query. TheIndex info page opens.
- Scroll down to theDeployed indexes section and select the deployed index you want to query. TheDeployed index info page opens.
- From theQuery index section, select whether to query by a dense embedding value, a sparse embedding value, a hybrid embedding value (dense and sparse embeddings), or a specific data point.
- Enter the query parameters for the type of query you selected. For example, if you're querying by a dense embedding, enter the embedding vector to query by.
- Execute the query using the provided curl command, or by running with Cloud Shell.
- If using Cloud Shell, selectRun in Cloud Shell.
- Run in Cloud Shell.
- The results return nearest neighbors.
Hybrid queries
Hybrid search uses both dense andsparse embeddings for searches based on combination of keyword search andsemantic search.
Python
To learn how to install or update the Vertex AI SDK for Python, seeInstall the Vertex AI SDK for Python. For more information, see thePython API reference documentation.
defvector_search_find_neighbors_hybrid_queries(project:str,location:str,index_endpoint_name:str,deployed_index_id:str,num_neighbors:int,)->List[List[aiplatform.matching_engine.matching_engine_index_endpoint.MatchNeighbor]]:"""Query the vector search index using example hybrid queries.Args:project(str):Required.ProjectIDlocation(str):Required.Theregionnameindex_endpoint_name(str):Required.Indexendpointtorunthequeryagainst.deployed_index_id(str):Required.TheIDoftheDeployedIndextorunthequeriesagainst.num_neighbors(int):Required.Thenumberofneighborstoreturn.Returns:List[List[aiplatform.matching_engine.matching_engine_index_endpoint.MatchNeighbor]]-Alistofnearestneighborsforeachquery."""#InitializetheVertexAIclientaiplatform.init(project=project,location=location)#Createtheindexendpointinstancefromanexistingendpoint.my_index_endpoint=aiplatform.MatchingEngineIndexEndpoint(index_endpoint_name=index_endpoint_name)#Queryhybriddatapoints,sparse-onlydatapoints,anddense-onlydatapoints.hybrid_queries=[aiplatform.matching_engine.matching_engine_index_endpoint.HybridQuery(dense_embedding=[1,2,3],sparse_embedding_dimensions=[10,20,30],sparse_embedding_values=[1.0,1.0,1.0],rrf_ranking_alpha=0.5,),aiplatform.matching_engine.matching_engine_index_endpoint.HybridQuery(dense_embedding=[1,2,3],sparse_embedding_dimensions=[10,20,30],sparse_embedding_values=[0.1,0.2,0.3],),aiplatform.matching_engine.matching_engine_index_endpoint.HybridQuery(sparse_embedding_dimensions=[10,20,30],sparse_embedding_values=[0.1,0.2,0.3],),aiplatform.matching_engine.matching_engine_index_endpoint.HybridQuery(dense_embedding=[1,2,3]),]returnmy_index_endpoint.find_neighbors(deployed_index_id=deployed_index_id,queries=hybrid_queries,num_neighbors=num_neighbors,)Queries with filtering and crowding
Filtering vector matches lets you restrictyour nearest neighbor results to specific categories. Filters can also designatecategories to exclude from your results.
Per-crowding neighbor limitscan increase result diversity by limiting the number of results returned fromany singlecrowding tag in yourindex data.
Python
To learn how to install or update the Vertex AI SDK for Python, seeInstall the Vertex AI SDK for Python. For more information, see thePython API reference documentation.
defvector_search_find_neighbors_filtering_crowding(project:str,location:str,index_endpoint_name:str,deployed_index_id:str,queries:List[List[float]],num_neighbors:int,filter:List[aiplatform.matching_engine.matching_engine_index_endpoint.Namespace],numeric_filter:List[ aiplatform.matching_engine.matching_engine_index_endpoint.NumericNamespace],per_crowding_attribute_neighbor_count:int,)->List[ List[aiplatform.matching_engine.matching_engine_index_endpoint.MatchNeighbor]]:"""Query the vector search index with filtering and crowding. Args: project (str): Required. Project ID location (str): Required. The region name index_endpoint_name (str): Required. Index endpoint to run the query against. deployed_index_id (str): Required. The ID of the DeployedIndex to run the queries against. queries (List[List[float]]): Required. A list of queries. Each query is a list of floats, representing a single embedding. num_neighbors (int): Required. The number of neighbors to return. filter (List[Namespace]): Required. A list of Namespaces for filtering the matching results. For example, [Namespace("color", ["red"], []), Namespace("shape", [], ["square"])] will match datapoints that satisfy "redcolor" but not include datapoints with "squareshape". numeric_filter (List[NumericNamespace]): Required. A list of NumericNamespaces for filtering the matching results. For example, [NumericNamespace(name="cost", value_int=5, op="GREATER")] will limit the matching results to datapoints with cost greater than 5. per_crowding_attribute_neighbor_count (int): Required. The maximum number of returned matches with the same crowding tag. Returns: List[List[aiplatform.matching_engine.matching_engine_index_endpoint.MatchNeighbor]] - A list of nearest neighbors for each query. """#InitializetheVertexAIclientaiplatform.init(project=project,location=location)#Createtheindexendpointinstancefromanexistingendpoint.my_index_endpoint=aiplatform.MatchingEngineIndexEndpoint(index_endpoint_name=index_endpoint_name)#Querytheindexendpointforthenearestneighbors.returnmy_index_endpoint.find_neighbors(deployed_index_id=deployed_index_id,queries=queries,num_neighbors=num_neighbors,filter=filter,numeric_filter=numeric_filter,per_crowding_attribute_neighbor_count=per_crowding_attribute_neighbor_count,)Query-time settings that impact performance
The following query-time parameters can affect latency, availability, andcost when using Vector Search. This guidance applies to most cases.However, always experiment with your configurations to make sure that they workfor your use case.
For parameter definitions, seeIndex configurationparameters.
| Parameter | About | Performance impact |
|---|---|---|
approximateNeighborsCount | Tells the algorithm the number of approximate results to retrieve from each shard. The value of The corresponding REST API name for this field is | Increasing the value of
Decreasing the value of
|
setNeighborCount | Specifies the number of results that you want the query to return. The corresponding REST API name for this field is | Values less than or equal to 300 remain performant in most use cases. For larger values, test for your specific use case. |
fractionLeafNodesToSearch | Controls the percentage of leaf nodes to visit when searching for nearest neighbors. This is related to theleafNodeEmbeddingCount in that the more embeddings per leaf node, the more data examined per leaf. The corresponding REST API name for this field is | Increasing the value of
Decreasing the value of
|
Except as otherwise noted, the content of this page is licensed under theCreative Commons Attribution 4.0 License, and code samples are licensed under theApache 2.0 License. For details, see theGoogle Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-12-15 UTC.