Package vision_models (1.56.0) Stay organized with collections Save and categorize content based on your preferences.
- 1.122.0 (latest)
- 1.121.0
- 1.120.0
- 1.119.0
- 1.118.0
- 1.117.0
- 1.116.0
- 1.115.0
- 1.114.0
- 1.113.0
- 1.112.0
- 1.111.0
- 1.110.0
- 1.109.0
- 1.108.0
- 1.107.0
- 1.106.0
- 1.105.0
- 1.104.0
- 1.103.0
- 1.102.0
- 1.101.0
- 1.100.0
- 1.99.0
- 1.98.0
- 1.97.0
- 1.96.0
- 1.95.1
- 1.94.0
- 1.93.1
- 1.92.0
- 1.91.0
- 1.90.0
- 1.89.0
- 1.88.0
- 1.87.0
- 1.86.0
- 1.85.0
- 1.84.0
- 1.83.0
- 1.82.0
- 1.81.0
- 1.80.0
- 1.79.0
- 1.78.0
- 1.77.0
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
API documentation forvision_models package.
Classes
Image
Image.
ImageCaptioningModel
Generates captions from image.
Examples::
model = ImageCaptioningModel.from_pretrained("imagetext@001")image = Image.load_from_file("image.png")captions = model.get_captions( image=image, # Optional: number_of_results=1, language="en",)ImageQnAModel
Answers questions about an image.
Examples::
model = ImageQnAModel.from_pretrained("imagetext@001")image = Image.load_from_file("image.png")answers = model.ask_question( image=image, question="What color is the car in this image?", # Optional: number_of_results=1,)ImageTextModel
Generates text from images.
Examples::
model = ImageTextModel.from_pretrained("imagetext@001")image = Image.load_from_file("image.png")captions = model.get_captions( image=image, # Optional: number_of_results=1, language="en",)answers = model.ask_question( image=image, question="What color is the car in this image?", # Optional: number_of_results=1,)MultiModalEmbeddingModel
Generates embedding vectors from images and videos.
Examples::
model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding@001")image = Image.load_from_file("image.png")video = Video.load_from_file("video.mp4")embeddings = model.get_embeddings( image=image, video=video, contextual_text="Hello world",)image_embedding = embeddings.image_embeddingvideo_embeddings = embeddings.video_embeddingstext_embedding = embeddings.text_embeddingMultiModalEmbeddingResponse
The multimodal embedding response.
Video
Video.
VideoEmbedding
Embeddings generated from video with offset times.
VideoSegmentConfig
The specific video segments (in seconds) the embeddings are generated for.
Except as otherwise noted, the content of this page is licensed under theCreative Commons Attribution 4.0 License, and code samples are licensed under theApache 2.0 License. For details, see theGoogle Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-10-30 UTC.