- 1.122.0 (latest)
- 1.121.0
- 1.120.0
- 1.119.0
- 1.118.0
- 1.117.0
- 1.116.0
- 1.115.0
- 1.114.0
- 1.113.0
- 1.112.0
- 1.111.0
- 1.110.0
- 1.109.0
- 1.108.0
- 1.107.0
- 1.106.0
- 1.105.0
- 1.104.0
- 1.103.0
- 1.102.0
- 1.101.0
- 1.100.0
- 1.99.0
- 1.98.0
- 1.97.0
- 1.96.0
- 1.95.1
- 1.94.0
- 1.93.1
- 1.92.0
- 1.91.0
- 1.90.0
- 1.89.0
- 1.88.0
- 1.87.0
- 1.86.0
- 1.85.0
- 1.84.0
- 1.83.0
- 1.82.0
- 1.81.0
- 1.80.0
- 1.79.0
- 1.78.0
- 1.77.0
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
Types for Google Cloud Aiplatform V1 Schema Trainingjob Definition v1 API
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassification(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
A TrainingJob that trains and uploads an AutoML ImageClassification Model.
inputs()
The input parameters of this TrainingJob.
Type
google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassificationInputs
metadata()
The metadata information.
Type
google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassificationMetadata
inputs(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_image_classification.AutoMlImageClassificationInputs](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassificationInputs_ )
metadata(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_image_classification.AutoMlImageClassificationMetadata](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassificationMetadata_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassificationInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
model_type()
base_model_id()
The ID of thebase model. If it is specified, the newmodel will be trained based on thebase model.Otherwise, the new model will be trained from scratch. Thebase model must be in the same Project and Location asthe new Model to train, and have the same modelType.
Type
budget_milli_node_hours()
The training budget of creating this model, expressed inmilli node hours i.e. 1,000 value in this field means 1 nodehour. The actual metadata.costMilliNodeHours will be equalor less than this value. If further model training ceases toprovide any improvements, it will stop without using thefull budget and the metadata.successfulStopReason will bemodel-converged. Note, node_hour = actual_hour *number_of_nodes_involved. For modelTypecloud(default), the budget must be between 8,000 and800,000 milli node hours, inclusive. The default value is192,000 which represents one day in wall time, considering 8nodes are used. For model typesmobile-tf-low-latency-1,mobile-tf-versatile-1,mobile-tf-high-accuracy-1,the training budget must be between 1,000 and 100,000 millinode hours, inclusive. The default value is 24,000 whichrepresents one day in wall time on a single node that isused.
Type
disable_early_stopping()
Use the entire training budget. This disablesthe early stopping feature. When false the earlystopping feature is enabled, which means thatAutoML Image Classification might stop trainingbefore the entire training budget has been used.
Type
multi_label()
If false, a single-label (multi-class) Modelwill be trained (i.e. assuming that for eachimage just up to one annotation may beapplicable). If true, a multi-label Model willbe trained (i.e. assuming that for each imagemultiple annotations may be applicable).
Type
class ModelType(value)
Bases:proto.enums.Enum
Values:
MODEL_TYPE_UNSPECIFIED (0): Should not be set.CLOUD (1): A Model best tailored to be used within Google Cloud, and which cannot be exported. Default.MOBILE_TF_LOW_LATENCY_1 (2): A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow or Core ML model and used on a mobile or edge device afterwards. Expected to have low latency, but may have lower prediction quality than other mobile models.MOBILE_TF_VERSATILE_1 (3): A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow or Core ML model and used on a mobile or edge device with afterwards.MOBILE_TF_HIGH_ACCURACY_1 (4): A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow or Core ML model and used on a mobile or edge device afterwards. Expected to have a higher latency, but should also have a higher prediction quality than other mobile models.CLOUD( = )
MOBILE_TF_HIGH_ACCURACY_1( = )
MOBILE_TF_LOW_LATENCY_1( = )
MOBILE_TF_VERSATILE_1( = )
MODEL_TYPE_UNSPECIFIED( = )
base_model_id(: [str](https://docs.python.org/3/library/stdtypes.html#str )
budget_milli_node_hours(: [int](https://docs.python.org/3/library/functions.html#int )
disable_early_stopping(: [bool](https://docs.python.org/3/library/functions.html#bool )
model_type(: [ModelType](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassificationInputs.ModelType_ )
multi_label(: [bool](https://docs.python.org/3/library/functions.html#bool )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassificationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
cost_milli_node_hours()
The actual training cost of creating thismodel, expressed in milli node hours, i.e. 1,000value in this field means 1 node hour.Guaranteed to not exceedinputs.budgetMilliNodeHours.
Type
successful_stop_reason()
For successful job completions, this is thereason why the job has finished.
class SuccessfulStopReason(value)
Bases:proto.enums.Enum
Values:
SUCCESSFUL_STOP_REASON_UNSPECIFIED (0): Should not be set.BUDGET_REACHED (1): The inputs.budgetMilliNodeHours had been reached.MODEL_CONVERGED (2): Further training of the Model ceased to increase its quality, since it already has converged.BUDGET_REACHED( = )
MODEL_CONVERGED( = )
SUCCESSFUL_STOP_REASON_UNSPECIFIED( = )
cost_milli_node_hours(: [int](https://docs.python.org/3/library/functions.html#int )
successful_stop_reason(: [SuccessfulStopReason](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageClassificationMetadata.SuccessfulStopReason_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetection(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
A TrainingJob that trains and uploads an AutoML Image ObjectDetection Model.
inputs()
The input parameters of this TrainingJob.
Type
google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetectionInputs
metadata()
The metadata information
Type
google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetectionMetadata
inputs(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_image_object_detection.AutoMlImageObjectDetectionInputs](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetectionInputs_ )
metadata(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_image_object_detection.AutoMlImageObjectDetectionMetadata](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetectionMetadata_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetectionInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
model_type()
budget_milli_node_hours()
The training budget of creating this model, expressed inmilli node hours i.e. 1,000 value in this field means 1 nodehour. The actual metadata.costMilliNodeHours will be equalor less than this value. If further model training ceases toprovide any improvements, it will stop without using thefull budget and the metadata.successfulStopReason will bemodel-converged. Note, node_hour = actual_hour *number_of_nodes_involved. For modelTypecloud(default), the budget must be between 20,000 and900,000 milli node hours, inclusive. The default value is216,000 which represents one day in wall time, considering 9nodes are used. For model typesmobile-tf-low-latency-1,mobile-tf-versatile-1,mobile-tf-high-accuracy-1 thetraining budget must be between 1,000 and 100,000 milli nodehours, inclusive. The default value is 24,000 whichrepresents one day in wall time on a single node that isused.
Type
disable_early_stopping()
Use the entire training budget. This disablesthe early stopping feature. When false the earlystopping feature is enabled, which means thatAutoML Image Object Detection might stoptraining before the entire training budget hasbeen used.
Type
class ModelType(value)
Bases:proto.enums.Enum
Values:
MODEL_TYPE_UNSPECIFIED (0): Should not be set.CLOUD_HIGH_ACCURACY_1 (1): A model best tailored to be used within Google Cloud, and which cannot be exported. Expected to have a higher latency, but should also have a higher prediction quality than other cloud models.CLOUD_LOW_LATENCY_1 (2): A model best tailored to be used within Google Cloud, and which cannot be exported. Expected to have a low latency, but may have lower prediction quality than other cloud models.MOBILE_TF_LOW_LATENCY_1 (3): A model that, in addition to being available within Google Cloud can also be exported (see ModelService.ExportModel) and used on a mobile or edge device with TensorFlow afterwards. Expected to have low latency, but may have lower prediction quality than other mobile models.MOBILE_TF_VERSATILE_1 (4): A model that, in addition to being available within Google Cloud can also be exported (see ModelService.ExportModel) and used on a mobile or edge device with TensorFlow afterwards.MOBILE_TF_HIGH_ACCURACY_1 (5): A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) and used on a mobile or edge device with TensorFlow afterwards. Expected to have a higher latency, but should also have a higher prediction quality than other mobile models.CLOUD_HIGH_ACCURACY_1( = )
CLOUD_LOW_LATENCY_1( = )
MOBILE_TF_HIGH_ACCURACY_1( = )
MOBILE_TF_LOW_LATENCY_1( = )
MOBILE_TF_VERSATILE_1( = )
MODEL_TYPE_UNSPECIFIED( = )
budget_milli_node_hours(: [int](https://docs.python.org/3/library/functions.html#int )
disable_early_stopping(: [bool](https://docs.python.org/3/library/functions.html#bool )
model_type(: [ModelType](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetectionInputs.ModelType_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetectionMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
cost_milli_node_hours()
The actual training cost of creating thismodel, expressed in milli node hours, i.e. 1,000value in this field means 1 node hour.Guaranteed to not exceedinputs.budgetMilliNodeHours.
Type
successful_stop_reason()
For successful job completions, this is thereason why the job has finished.
class SuccessfulStopReason(value)
Bases:proto.enums.Enum
Values:
SUCCESSFUL_STOP_REASON_UNSPECIFIED (0): Should not be set.BUDGET_REACHED (1): The inputs.budgetMilliNodeHours had been reached.MODEL_CONVERGED (2): Further training of the Model ceased to increase its quality, since it already has converged.BUDGET_REACHED( = )
MODEL_CONVERGED( = )
SUCCESSFUL_STOP_REASON_UNSPECIFIED( = )
cost_milli_node_hours(: [int](https://docs.python.org/3/library/functions.html#int )
successful_stop_reason(: [SuccessfulStopReason](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageObjectDetectionMetadata.SuccessfulStopReason_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentation(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
A TrainingJob that trains and uploads an AutoML ImageSegmentation Model.
inputs()
The input parameters of this TrainingJob.
metadata()
The metadata information.
Type
google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentationMetadata
inputs(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_image_segmentation.AutoMlImageSegmentationInputs](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentationInputs_ )
metadata(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_image_segmentation.AutoMlImageSegmentationMetadata](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentationMetadata_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentationInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
model_type()
budget_milli_node_hours()
The training budget of creating this model, expressed inmilli node hours i.e. 1,000 value in this field means 1 nodehour. The actual metadata.costMilliNodeHours will be equalor less than this value. If further model training ceases toprovide any improvements, it will stop without using thefull budget and the metadata.successfulStopReason will bemodel-converged. Note, node_hour = actual_hour *number_of_nodes_involved. Or actaul_wall_clock_hours =train_budget_milli_node_hours / (number_of_nodes_involved *1000) For modelTypecloud-high-accuracy-1(default),the budget must be between 20,000 and 2,000,000 milli nodehours, inclusive. The default value is 192,000 whichrepresents one day in wall time (1000 milli * 24 hours * 8nodes).
Type
base_model_id()
The ID of thebase model. If it is specified, the newmodel will be trained based on thebase model.Otherwise, the new model will be trained from scratch. Thebase model must be in the same Project and Location asthe new Model to train, and have the same modelType.
Type
class ModelType(value)
Bases:proto.enums.Enum
Values:
MODEL_TYPE_UNSPECIFIED (0): Should not be set.CLOUD_HIGH_ACCURACY_1 (1): A model to be used via prediction calls to uCAIP API. Expected to have a higher latency, but should also have a higher prediction quality than other models.CLOUD_LOW_ACCURACY_1 (2): A model to be used via prediction calls to uCAIP API. Expected to have a lower latency but relatively lower prediction quality.MOBILE_TF_LOW_LATENCY_1 (3): A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow model and used on a mobile or edge device afterwards. Expected to have low latency, but may have lower prediction quality than other mobile models.CLOUD_HIGH_ACCURACY_1( = )
CLOUD_LOW_ACCURACY_1( = )
MOBILE_TF_LOW_LATENCY_1( = )
MODEL_TYPE_UNSPECIFIED( = )
base_model_id(: [str](https://docs.python.org/3/library/stdtypes.html#str )
budget_milli_node_hours(: [int](https://docs.python.org/3/library/functions.html#int )
model_type(: [ModelType](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentationInputs.ModelType_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
cost_milli_node_hours()
The actual training cost of creating thismodel, expressed in milli node hours, i.e. 1,000value in this field means 1 node hour.Guaranteed to not exceedinputs.budgetMilliNodeHours.
Type
successful_stop_reason()
For successful job completions, this is thereason why the job has finished.
class SuccessfulStopReason(value)
Bases:proto.enums.Enum
Values:
SUCCESSFUL_STOP_REASON_UNSPECIFIED (0): Should not be set.BUDGET_REACHED (1): The inputs.budgetMilliNodeHours had been reached.MODEL_CONVERGED (2): Further training of the Model ceased to increase its quality, since it already has converged.BUDGET_REACHED( = )
MODEL_CONVERGED( = )
SUCCESSFUL_STOP_REASON_UNSPECIFIED( = )
cost_milli_node_hours(: [int](https://docs.python.org/3/library/functions.html#int )
successful_stop_reason(: [SuccessfulStopReason](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlImageSegmentationMetadata.SuccessfulStopReason_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTables(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
A TrainingJob that trains and uploads an AutoML Tables Model.
inputs()
The input parameters of this TrainingJob.
metadata()
The metadata information.
inputs(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_tables.AutoMlTablesInputs](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs_ )
metadata(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_tables.AutoMlTablesMetadata](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesMetadata_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
This message hasoneof fields (mutually exclusive fields).For each oneof, at most one member field can be set at the same time.Setting any member of the oneof automatically clears all othermembers.
optimization_objective_recall_value()
Required when optimization_objective is“maximize-precision-at-recall”. Must be between 0 and 1,inclusive.
This field is a member ofoneofadditional_optimization_objective_config.
Type
optimization_objective_precision_value()
Required when optimization_objective is“maximize-recall-at-precision”. Must be between 0 and 1,inclusive.
This field is a member ofoneofadditional_optimization_objective_config.
Type
prediction_type()
The type of prediction the Model is toproduce. “classification” - Predict one out ofmultiple target values ispicked for each row.
“regression” - Predict a value based on its
relation to other values. Thistype is available only to columns that containsemantically numeric values, i.e. integers orfloating point number, even ifstored as e.g. strings.
Type
target_column()
The column name of the target column that themodel is to predict.
Type
transformations()
Each transformation will apply transformfunction to given input column. And the resultwill be used for training. When creatingtransformation for BigQuery Struct column, thecolumn should be flattened using “.” as thedelimiter.
Type
MutableSequence[google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation]
optimization_objective()
Objective function the model is optimizingtowards. The training process creates a modelthat maximizes/minimizes the value of theobjective function over the validation set.
The supported optimization objectives depend onthe prediction type. If the field is not set, adefault objective function is used.
classification (binary):
“maximize-au-roc” (default) - Maximize the
area under the receiveroperating characteristic (ROC) curve.“minimize-log-loss” - Minimize log loss.
“maximize-au-prc” - Maximize the area under
the precision-recall curve.“maximize-precision-at-recall” - Maximizeprecision for a specifiedrecall value. “maximize-recall-at-precision” -Maximize recall for a specifiedprecision value.
classification (multi-class):
“minimize-log-loss” (default) - Minimize log
loss.
regression:
“minimize-rmse” (default) - Minimize
root-mean-squared error (RMSE). “minimize-mae”
Minimize mean-absolute error (MAE).“minimize-rmsle” - Minimize root-mean-squaredlog error (RMSLE).
Type
train_budget_milli_node_hours()
Required. The train budget of creating thismodel, expressed in milli node hours i.e. 1,000value in this field means 1 node hour.
The training cost of the model will not exceedthis budget. The final cost will be attempted tobe close to the budget, though may end up being(even) noticeably smaller - at the backend’sdiscretion. This especially may happen whenfurther model training ceases to provide anyimprovements.
If the budget is set to a value known to beinsufficient to train a model for the givendataset, the training won’t be attempted andwill error.
The train budget must be between 1,000 and72,000 milli node hours, inclusive.
Type
disable_early_stopping()
Use the entire training budget. This disablesthe early stopping feature. By default, theearly stopping feature is enabled, which meansthat AutoML Tables might stop training beforethe entire training budget has been used.
Type
weight_column_name()
Column name that should be used as the weightcolumn. Higher values in this column give moreimportance to the row during model training. Thecolumn must have numeric values between 0 and10000 inclusively; 0 means the row is ignoredfor training. If weight column field is not set,then all rows are assumed to have equal weightof 1.
Type
export_evaluated_data_items_config()
Configuration for exporting test setpredictions to a BigQuery table. If thisconfiguration is absent, then the export is notperformed.
Type
google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.ExportEvaluatedDataItemsConfig
additional_experiments()
Additional experiment flags for the Tablestraining pipeline.
Type
MutableSequence[str]
class Transformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
This message hasoneof fields (mutually exclusive fields).For each oneof, at most one member field can be set at the same time.Setting any member of the oneof automatically clears all othermembers.
auto()
This field is a member ofoneoftransformation_detail.
numeric()
This field is a member ofoneoftransformation_detail.
categorical()
This field is a member ofoneoftransformation_detail.
timestamp()
This field is a member ofoneoftransformation_detail.
text()
This field is a member ofoneoftransformation_detail.
repeated_numeric()
This field is a member ofoneoftransformation_detail.
repeated_categorical()
This field is a member ofoneoftransformation_detail.
repeated_text()
This field is a member ofoneoftransformation_detail.
class AutoTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
Training pipeline will infer the proper transformation basedon the statistic of dataset.
column_name()
Type
column_name(: [str](https://docs.python.org/3/library/stdtypes.html#str )
class CategoricalArrayTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
Treats the column as categorical array and performs followingtransformation functions.
For each element in the array, convert the category name to adictionary lookup index and generate an embedding for each index.Combine the embedding of all elements into a single embeddingusing the mean.
Empty arrays treated as an embedding of zeroes.
column_name()
Type
column_name(: [str](https://docs.python.org/3/library/stdtypes.html#str )
class CategoricalTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
Training pipeline will perform following transformation functions.
The categorical string as is–no change to case, punctuation,spelling, tense, and so on.
Convert the category name to a dictionary lookup index andgenerate an embedding for each index.
Categories that appear less than 5 times in the training datasetare treated as the “unknown” category. The “unknown” categorygets its own special lookup index and resulting embedding.
column_name()
Type
column_name(: [str](https://docs.python.org/3/library/stdtypes.html#str )
class NumericArrayTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
Treats the column as numerical array and performs followingtransformation functions.
All transformations for Numerical types applied to the average ofthe all elements.
The average of empty arrays is treated as zero.
column_name()
Type
invalid_values_allowed()
If invalid values is allowed, the trainingpipeline will create a boolean feature thatindicated whether the value is valid. Otherwise,the training pipeline will discard the input rowfrom trainining data.
Type
column_name(: [str](https://docs.python.org/3/library/stdtypes.html#str )
invalid_values_allowed(: [bool](https://docs.python.org/3/library/functions.html#bool )
class NumericTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
Training pipeline will perform following transformation functions.
The value converted to float32.
The z_score of the value.
log(value+1) when the value is greater than or equal to 0.Otherwise, this transformation is not applied and the value isconsidered a missing value.
z_score of log(value+1) when the value is greater than or equalto 0. Otherwise, this transformation is not applied and the valueis considered a missing value.
A boolean value that indicates whether the value is valid.
column_name()
Type
invalid_values_allowed()
If invalid values is allowed, the trainingpipeline will create a boolean feature thatindicated whether the value is valid. Otherwise,the training pipeline will discard the input rowfrom trainining data.
Type
column_name(: [str](https://docs.python.org/3/library/stdtypes.html#str )
invalid_values_allowed(: [bool](https://docs.python.org/3/library/functions.html#bool )
class TextArrayTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
Treats the column as text array and performs followingtransformation functions.
Concatenate all text values in the array into a single text valueusing a space (” “) as a delimiter, and then treat the result asa single text value. Apply the transformations for Text columns.
Empty arrays treated as an empty text.
column_name()
Type
column_name(: [str](https://docs.python.org/3/library/stdtypes.html#str )
class TextTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
Training pipeline will perform following transformation functions.
The text as is–no change to case, punctuation, spelling, tense,and so on.
Tokenize text to words. Convert each words to a dictionary lookupindex and generate an embedding for each index. Combine theembedding of all elements into a single embedding using the mean.
Tokenization is based on unicode script boundaries.
Missing values get their own lookup index and resultingembedding.
Stop-words receive no special treatment and are not removed.
column_name()
Type
column_name(: [str](https://docs.python.org/3/library/stdtypes.html#str )
class TimestampTransformation(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
Training pipeline will perform following transformation functions.
Apply the transformation functions for Numerical columns.
Determine the year, month, day,and weekday. Treat each value fromthe
timestamp as a Categorical column.
Invalid numerical values (for example, values that fall outsideof a typical timestamp range, or are extreme values) receive nospecial treatment and are not removed.
column_name()
Type
time_format()
The format in which that time field is expressed. Thetime_format must either be one of:
unix-secondsunix-millisecondsunix-microsecondsunix-nanoseconds(for respectively number of seconds,milliseconds, microseconds and nanoseconds since start ofthe Unix epoch); or be written instrftimesyntax. Iftime_format is not set, then the default format is RFC3339date-timeformat, wheretime-offset="Z"(e.g. 1985-04-12T23:20:50.52Z)Type
invalid_values_allowed()
If invalid values is allowed, the trainingpipeline will create a boolean feature thatindicated whether the value is valid. Otherwise,the training pipeline will discard the input rowfrom trainining data.
Type
column_name(: [str](https://docs.python.org/3/library/stdtypes.html#str )
invalid_values_allowed(: [bool](https://docs.python.org/3/library/functions.html#bool )
time_format(: [str](https://docs.python.org/3/library/stdtypes.html#str )
auto(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_tables.AutoMlTablesInputs.Transformation.AutoTransformation](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.AutoTransformation_ )
categorical(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_tables.AutoMlTablesInputs.Transformation.CategoricalTransformation](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.CategoricalTransformation_ )
numeric(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_tables.AutoMlTablesInputs.Transformation.NumericTransformation](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.NumericTransformation_ )
repeated_categorical(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_tables.AutoMlTablesInputs.Transformation.CategoricalArrayTransformation](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.CategoricalArrayTransformation_ )
repeated_numeric(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_tables.AutoMlTablesInputs.Transformation.NumericArrayTransformation](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.NumericArrayTransformation_ )
repeated_text(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_tables.AutoMlTablesInputs.Transformation.TextArrayTransformation](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.TextArrayTransformation_ )
text(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_tables.AutoMlTablesInputs.Transformation.TextTransformation](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.TextTransformation_ )
timestamp(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_tables.AutoMlTablesInputs.Transformation.TimestampTransformation](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation.TimestampTransformation_ )
additional_experiments(: MutableSequence[str )
disable_early_stopping(: [bool](https://docs.python.org/3/library/functions.html#bool )
export_evaluated_data_items_config(: gcastd_export_evaluated_data_items_config.ExportEvaluatedDataItemsConfi )
optimization_objective(: [str](https://docs.python.org/3/library/stdtypes.html#str )
optimization_objective_precision_value(: [float](https://docs.python.org/3/library/functions.html#float )
optimization_objective_recall_value(: [float](https://docs.python.org/3/library/functions.html#float )
prediction_type(: [str](https://docs.python.org/3/library/stdtypes.html#str )
target_column(: [str](https://docs.python.org/3/library/stdtypes.html#str )
train_budget_milli_node_hours(: [int](https://docs.python.org/3/library/functions.html#int )
transformations(: MutableSequence[[Transformation](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesInputs.Transformation)_ )
weight_column_name(: [str](https://docs.python.org/3/library/stdtypes.html#str )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTablesMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
Model metadata specific to AutoML Tables.
train_cost_milli_node_hours()
Output only. The actual training cost of themodel, expressed in milli node hours, i.e. 1,000value in this field means 1 node hour.Guaranteed to not exceed the train budget.
Type
train_cost_milli_node_hours(: [int](https://docs.python.org/3/library/functions.html#int )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextClassification(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
A TrainingJob that trains and uploads an AutoML TextClassification Model.
inputs()
The input parameters of this TrainingJob.
Type
google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextClassificationInputs
inputs(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_text_classification.AutoMlTextClassificationInputs](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextClassificationInputs_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextClassificationInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
multi_label()
Type
multi_label(: [bool](https://docs.python.org/3/library/functions.html#bool )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextExtraction(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
A TrainingJob that trains and uploads an AutoML TextExtraction Model.
inputs()
The input parameters of this TrainingJob.
Type
google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextExtractionInputs
inputs(: google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_text_extraction.AutoMlTextExtractionInput )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextExtractionInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextSentiment(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
A TrainingJob that trains and uploads an AutoML TextSentiment Model.
inputs()
The input parameters of this TrainingJob.
inputs(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_text_sentiment.AutoMlTextSentimentInputs](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextSentimentInputs_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlTextSentimentInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
sentiment_max()
A sentiment is expressed as an integerordinal, where higher value means a morepositive sentiment. The range of sentiments thatwill be used is between 0 and sentimentMax(inclusive on both ends), and all the values inthe range must be represented in the datasetbefore a model can be created.Only the Annotations with this sentimentMax willbe used for training. sentimentMax value must bebetween 1 and 10 (inclusive).
Type
sentiment_max(: [int](https://docs.python.org/3/library/functions.html#int )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoActionRecognition(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
A TrainingJob that trains and uploads an AutoML Video ActionRecognition Model.
inputs()
The input parameters of this TrainingJob.
Type
google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoActionRecognitionInputs
inputs(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_video_action_recognition.AutoMlVideoActionRecognitionInputs](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoActionRecognitionInputs_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoActionRecognitionInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
model_type()
class ModelType(value)
Bases:proto.enums.Enum
Values:
MODEL_TYPE_UNSPECIFIED (0): Should not be set.CLOUD (1): A model best tailored to be used within Google Cloud, and which c annot be exported. Default.MOBILE_VERSATILE_1 (2): A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as a TensorFlow or TensorFlow Lite model and used on a mobile or edge device afterwards.MOBILE_JETSON_VERSATILE_1 (3): A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) to a Jetson device afterwards.MOBILE_CORAL_VERSATILE_1 (4): A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as a TensorFlow or TensorFlow Lite model and used on a Coral device afterwards.CLOUD( = )
MOBILE_CORAL_VERSATILE_1( = )
MOBILE_JETSON_VERSATILE_1( = )
MOBILE_VERSATILE_1( = )
MODEL_TYPE_UNSPECIFIED( = )
model_type(: [ModelType](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoActionRecognitionInputs.ModelType_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoClassification(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
A TrainingJob that trains and uploads an AutoML VideoClassification Model.
inputs()
The input parameters of this TrainingJob.
Type
google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoClassificationInputs
inputs(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_video_classification.AutoMlVideoClassificationInputs](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoClassificationInputs_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoClassificationInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
model_type()
class ModelType(value)
Bases:proto.enums.Enum
Values:
MODEL_TYPE_UNSPECIFIED (0): Should not be set.CLOUD (1): A model best tailored to be used within Google Cloud, and which cannot be exported. Default.MOBILE_VERSATILE_1 (2): A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as a TensorFlow or TensorFlow Lite model and used on a mobile or edge device afterwards.MOBILE_JETSON_VERSATILE_1 (3): A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) to a Jetson device afterwards.CLOUD( = )
MOBILE_JETSON_VERSATILE_1( = )
MOBILE_VERSATILE_1( = )
MODEL_TYPE_UNSPECIFIED( = )
model_type(: [ModelType](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoClassificationInputs.ModelType_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoObjectTracking(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
A TrainingJob that trains and uploads an AutoML VideoObjectTracking Model.
inputs()
The input parameters of this TrainingJob.
Type
google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoObjectTrackingInputs
inputs(: [google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.automl_video_object_tracking.AutoMlVideoObjectTrackingInputs](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoObjectTrackingInputs_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoObjectTrackingInputs(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
model_type()
class ModelType(value)
Bases:proto.enums.Enum
Values:
MODEL_TYPE_UNSPECIFIED (0): Should not be set.CLOUD (1): A model best tailored to be used within Google Cloud, and which c annot be exported. Default.MOBILE_VERSATILE_1 (2): A model that, in addition to being available within Google Cloud, can also be exported (see ModelService.ExportModel) as a TensorFlow or TensorFlow Lite model and used on a mobile or edge device afterwards.MOBILE_CORAL_VERSATILE_1 (3): A versatile model that is meant to be exported (see ModelService.ExportModel) and used on a Google Coral device.MOBILE_CORAL_LOW_LATENCY_1 (4): A model that trades off quality for low latency, to be exported (see ModelService.ExportModel) and used on a Google Coral device.MOBILE_JETSON_VERSATILE_1 (5): A versatile model that is meant to be exported (see ModelService.ExportModel) and used on an NVIDIA Jetson device.MOBILE_JETSON_LOW_LATENCY_1 (6): A model that trades off quality for low latency, to be exported (see ModelService.ExportModel) and used on an NVIDIA Jetson device.CLOUD( = )
MOBILE_CORAL_LOW_LATENCY_1( = )
MOBILE_CORAL_VERSATILE_1( = )
MOBILE_JETSON_LOW_LATENCY_1( = )
MOBILE_JETSON_VERSATILE_1( = )
MOBILE_VERSATILE_1( = )
MODEL_TYPE_UNSPECIFIED( = )
model_type(: [ModelType](../definition_v1/types.md#google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.AutoMlVideoObjectTrackingInputs.ModelType_ )
class google.cloud.aiplatform.v1.schema.trainingjob.definition_v1.types.ExportEvaluatedDataItemsConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Bases:proto.message.Message
Configuration for exporting test set predictions to aBigQuery table.
destination_bigquery_uri()
URI of desired destination BigQuery table. Expected format:bq://<project_id>:<dataset_id>:
If not specified, then results are exported to the followingauto-created BigQuery table:<project_id>:export_evaluated_examples_<model_name>_<yyyy_MM_dd’T’HH_mm_ss_SSS’Z’>.evaluated_examples
Type
override_existing_table()
If true and an export destination isspecified, then the contents of the destinationare overwritten. Otherwise, if the exportdestination already exists, then the exportoperation fails.
Type
destination_bigquery_uri(: [str](https://docs.python.org/3/library/stdtypes.html#str )
override_existing_table(: [bool](https://docs.python.org/3/library/functions.html#bool )
Except as otherwise noted, the content of this page is licensed under theCreative Commons Attribution 4.0 License, and code samples are licensed under theApache 2.0 License. For details, see theGoogle Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-10-30 UTC.