BigQuery Storage API Client Libraries

This page shows how to get started with the Cloud Client Libraries for theBigQuery Storage API. Client libraries make it easier to accessGoogle Cloud APIs from a supported language. Although you can useGoogle Cloud APIs directly by making raw requests to the server, clientlibraries provide simplifications that significantly reduce the amount of codeyou need to write.

Read more about the Cloud Client Librariesand the older Google API Client Libraries inClient libraries explained.

Install the client library

C++

For more information about installing the C++ library,see theGitHubREADME.

C#

Install-Package Google.Cloud.BigQuery.Storage.V1 -Pre

For more information, seeSetting Up a C# Development Environment.

Go

go get cloud.google.com/go/bigquery

For more information, seeSetting Up a Go Development Environment.

Java

If you are usingMaven, addthe following to yourpom.xml file. For more information aboutBOMs, seeThe Google Cloud Platform Libraries BOM.

<dependencyManagement>  <dependencies>    <dependency>      <groupId>com.google.cloud</groupId>      <artifactId>libraries-bom</artifactId>      <version>26.70.0</version>      <type>pom</type>      <scope>import</scope>    </dependency>    <dependency>      <groupId>io.opentelemetry</groupId>      <artifactId>opentelemetry-bom</artifactId>      <version>1.52.0</version>      <type>pom</type>      <scope>import</scope>    </dependency>  </dependencies></dependencyManagement><dependencies>  <dependency>    <groupId>com.google.cloud</groupId>    <artifactId>google-cloud-bigquerystorage</artifactId>  </dependency>

If you are usingGradle,add the following to your dependencies:

implementationplatform('com.google.cloud:libraries-bom:26.71.0')implementation'com.google.cloud:google-cloud-bigquerystorage'

If you are usingsbt, addthe following to your dependencies:

libraryDependencies+="com.google.cloud"%"google-cloud-bigquerystorage"%"3.19.0"

If you're using Visual Studio Code or IntelliJ, you can add client libraries to your project using the following IDE plugins:

The plugins provide additional functionality, such as key management for service accounts. Refer to each plugin's documentation for details.

Note: Cloud Java client libraries do not currently support Android.

For more information, seeSetting Up a Java Development Environment.

Node.js

npm install @google-cloud/bigquery-storage

For more information, seeSetting Up a Node.js Development Environment.

PHP

composer require google/cloud-bigquery-storage

For more information, seeUsing PHP on Google Cloud.

Python

pip install --upgrade google-cloud-bigquery-storage

For more information, seeSetting Up a Python Development Environment.

Ruby

gem install google-cloud-bigquery-storage

For more information, seeSetting Up a Ruby Development Environment.

Set up authentication

To authenticate calls to Google Cloud APIs, client libraries supportApplication Default Credentials (ADC);the libraries look for credentials in a set of defined locations and use those credentialsto authenticate requests to the API. With ADC, you can makecredentials available to your application in a variety of environments, such as localdevelopment or production, without needing to modify your application code.

For production environments, the way you set up ADC depends on the serviceand context. For more information, seeSet up Application Default Credentials.

For a local development environment, you can set up ADC with the credentialsthat are associated with your Google Account:

  1. Install the Google Cloud CLI. After installation,initialize the Google Cloud CLI by running the following command:

    gcloudinit

    If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity.

  2. If you're using a local shell, then create local authentication credentials for your user account:

    gcloudauthapplication-defaultlogin

    You don't need to do this if you're using Cloud Shell.

    If an authentication error is returned, and you are using an external identity provider (IdP), confirm that you have signed in to the gcloud CLI with your federated identity.

    A sign-in screen appears. After you sign in, your credentials are stored in the local credential file used by ADC.

Use the client library

The following example shows basic interactions with theBigQuery Storage Read API.

For examples of how to use the BigQuery Storage Write API, seePerform batch and streaming using the Storage Write API.

C++

#include"google/cloud/bigquery/storage/v1/bigquery_read_client.h"#include <iostream>namespace{voidProcessRowsInAvroFormat(::google::cloud::bigquery::storage::v1::AvroSchemaconst&,::google::cloud::bigquery::storage::v1::AvroRowsconst&){// Code to deserialize avro rows should be added here.}}// namespaceintmain(intargc,char*argv[])try{if(argc!=3){std::cerr <<"Usage: " <<argv[0] <<" <project-id> <table-name>\n";return1;}// project_name should be in the format "projects/<your-gcp-project>"std::stringconstproject_name="projects/"+std::string(argv[1]);// table_name should be in the format:// "projects/<project-table-resides-in>/datasets/<dataset-table_resides-in>/tables/<table// name>" The project values in project_name and table_name do not have to be// identical.std::stringconsttable_name=argv[2];// Create a namespace alias to make the code easier to read.namespacebigquery_storage=::google::cloud::bigquery_storage_v1;constexprintkMaxReadStreams=1;// Create the ReadSession.autoclient=bigquery_storage::BigQueryReadClient(bigquery_storage::MakeBigQueryReadConnection());::google::cloud::bigquery::storage::v1::ReadSessionread_session;read_session.set_data_format(google::cloud::bigquery::storage::v1::DataFormat::AVRO);read_session.set_table(table_name);autosession=client.CreateReadSession(project_name,read_session,kMaxReadStreams);if(!session)throwstd::move(session).status();// Read rows from the ReadSession.constexprintkRowOffset=0;autoread_rows=client.ReadRows(session->streams(0).name(),kRowOffset);std::int64_tnum_rows=0;for(autoconst&row:read_rows){if(row.ok()){num_rows+=row->row_count();ProcessRowsInAvroFormat(session->avro_schema(),row->avro_rows());}}std::cout <<num_rows <<" rows read from table: " <<table_name <<"\n";return0;}catch(google::cloud::Statusconst&status){std::cerr <<"google::cloud::Status thrown: " <<status <<"\n";return1;}

Go

// The bigquery_storage_quickstart application demonstrates usage of the// BigQuery Storage read API.  It demonstrates API features such as column// projection (limiting the output to a subset of a table's columns),// column filtering (using simple predicates to filter records on the server// side), establishing the snapshot time (reading data from the table at a// specific point in time), decoding Avro row blocks using the third party// "github.com/linkedin/goavro" library, and decoding Arrow row blocks using// the third party "github.com/apache/arrow/go" library.packagemainimport("bytes""context""encoding/json""flag""fmt""io""log""sort""strings""sync""time"bqStorage"cloud.google.com/go/bigquery/storage/apiv1""cloud.google.com/go/bigquery/storage/apiv1/storagepb""github.com/apache/arrow/go/v10/arrow""github.com/apache/arrow/go/v10/arrow/ipc""github.com/apache/arrow/go/v10/arrow/memory"gax"github.com/googleapis/gax-go/v2"goavro"github.com/linkedin/goavro/v2""google.golang.org/genproto/googleapis/rpc/errdetails""google.golang.org/grpc""google.golang.org/grpc/codes""google.golang.org/grpc/status""google.golang.org/protobuf/types/known/timestamppb")// rpcOpts is used to configure the underlying gRPC client to accept large// messages.  The BigQuery Storage API may send message blocks up to 128MB// in size.varrpcOpts=gax.WithGRPCOptions(grpc.MaxCallRecvMsgSize(1024*1024*129),)// Available formatsconst(AVRO_FORMAT="avro"ARROW_FORMAT="arrow")// Command-line flags.var(projectID=flag.String("project_id","","Cloud Project ID, used for session creation.")snapshotMillis=flag.Int64("snapshot_millis",0,"Snapshot time to use for reads, represented in epoch milliseconds format.  Default behavior reads current data.")format=flag.String("format",AVRO_FORMAT,"format to read data from storage API. Default is avro."))funcmain(){flag.Parse()ctx:=context.Background()bqReadClient,err:=bqStorage.NewBigQueryReadClient(ctx)iferr!=nil{log.Fatalf("NewBigQueryStorageClient: %v",err)}deferbqReadClient.Close()// Verify we've been provided a parent project which will contain the read session.  The// session may exist in a different project than the table being read.if*projectID==""{log.Fatalf("No parent project ID specified, please supply using the --project_id flag.")}// This example uses baby name data from the public datasets.srcProjectID:="bigquery-public-data"srcDatasetID:="usa_names"srcTableID:="usa_1910_current"readTable:=fmt.Sprintf("projects/%s/datasets/%s/tables/%s",srcProjectID,srcDatasetID,srcTableID,)// We limit the output columns to a subset of those allowed in the table,// and set a simple filter to only report names from the state of// Washington (WA).tableReadOptions:=&storagepb.ReadSession_TableReadOptions{SelectedFields:[]string{"name","number","state"},RowRestriction:`state = "WA"`,}dataFormat:=storagepb.DataFormat_AVROif*format==ARROW_FORMAT{dataFormat=storagepb.DataFormat_ARROW}createReadSessionRequest:=&storagepb.CreateReadSessionRequest{Parent:fmt.Sprintf("projects/%s",*projectID),ReadSession:&storagepb.ReadSession{Table:readTable,DataFormat:dataFormat,ReadOptions:tableReadOptions,},MaxStreamCount:1,}// Set a snapshot time if it's been specified.if*snapshotMillis >0{ts:=timestamppb.New(time.Unix(0,*snapshotMillis*1000))if!ts.IsValid(){log.Fatalf("Invalid snapshot millis (%d): %v",*snapshotMillis,err)}createReadSessionRequest.ReadSession.TableModifiers=&storagepb.ReadSession_TableModifiers{SnapshotTime:ts,}}// Create the session from the request.session,err:=bqReadClient.CreateReadSession(ctx,createReadSessionRequest,rpcOpts)iferr!=nil{log.Fatalf("CreateReadSession: %v",err)}fmt.Printf("Read session: %s\n",session.GetName())iflen(session.GetStreams())==0{log.Fatalf("no streams in session.  if this was a small query result, consider writing to output to a named table.")}// We'll use only a single stream for reading data from the table.  Because// of dynamic sharding, this will yield all the rows in the table. However,// if you wanted to fan out multiple readers you could do so by having a// increasing the MaxStreamCount.readStream:=session.GetStreams()[0].Namech:=make(chan*storagepb.ReadRowsResponse)// Use a waitgroup to coordinate the reading and decoding goroutines.varwgsync.WaitGroup// Start the reading in one goroutine.wg.Add(1)gofunc(){deferwg.Done()iferr:=processStream(ctx,bqReadClient,readStream,ch);err!=nil{log.Fatalf("processStream failure: %v",err)}close(ch)}()// Start Avro processing and decoding in another goroutine.wg.Add(1)gofunc(){deferwg.Done()varerrerrorswitch*format{caseARROW_FORMAT:err=processArrow(ctx,session.GetArrowSchema().GetSerializedSchema(),ch)caseAVRO_FORMAT:err=processAvro(ctx,session.GetAvroSchema().GetSchema(),ch)}iferr!=nil{log.Fatalf("error processing %s: %v",*format,err)}}()// Wait until both the reading and decoding goroutines complete.wg.Wait()}// printDatum prints the decoded row datum.funcprintDatum(dinterface{}){m,ok:=d.(map[string]interface{})if!ok{log.Printf("failed type assertion: %v",d)}// Go's map implementation returns keys in a random ordering, so we sort// the keys before accessing.keys:=make([]string,len(m))i:=0fork:=rangem{keys[i]=ki++}sort.Strings(keys)for_,key:=rangekeys{fmt.Printf("%s: %-20v ",key,valueFromTypeMap(m[key]))}fmt.Println()}// printRecordBatch prints the arrow record batchfuncprintRecordBatch(recordarrow.Record)error{out,err:=record.MarshalJSON()iferr!=nil{returnerr}list:=[]map[string]interface{}{}err=json.Unmarshal(out,&list)iferr!=nil{returnerr}iflen(list)==0{returnnil}first:=list[0]keys:=make([]string,len(first))i:=0fork:=rangefirst{keys[i]=ki++}sort.Strings(keys)builder:=strings.Builder{}for_,m:=rangelist{for_,key:=rangekeys{builder.WriteString(fmt.Sprintf("%s: %-20v ",key,m[key]))}builder.WriteString("\n")}fmt.Print(builder.String())returnnil}// valueFromTypeMap returns the first value/key in the type map.  This function// is only suitable for simple schemas, as complex typing such as arrays and// records necessitate a more robust implementation.  See the goavro library// and the Avro specification for more information.funcvalueFromTypeMap(fieldinterface{})interface{}{m,ok:=field.(map[string]interface{})if!ok{returnnil}for_,v:=rangem{// Return the first key encountered.returnv}returnnil}// processStream reads rows from a single storage Stream, and sends the Storage Response// data blocks to a channel. This function will retry on transient stream// failures and bookmark progress to avoid re-reading data that's already been// successfully transmitted.funcprocessStream(ctxcontext.Context,client*bqStorage.BigQueryReadClient,ststring,chchan<-*storagepb.ReadRowsResponse)error{varoffsetint64// Streams may be long-running.  Rather than using a global retry for the// stream, implement a retry that resets once progress is made.retryLimit:=3retries:=0for{// Send the initiating request to start streaming row blocks.rowStream,err:=client.ReadRows(ctx,&storagepb.ReadRowsRequest{ReadStream:st,Offset:offset,},rpcOpts)iferr!=nil{returnfmt.Errorf("couldn't invoke ReadRows: %w",err)}// Process the streamed responses.for{r,err:=rowStream.Recv()iferr==io.EOF{returnnil}iferr!=nil{// If there is an error, check whether it is a retryable// error with a retry delay and sleep instead of increasing// retries count.varretryDelayDurationtime.DurationiferrorStatus,ok:=status.FromError(err);ok &&errorStatus.Code()==codes.ResourceExhausted{for_,detail:=rangeerrorStatus.Details(){retryInfo,ok:=detail.(*errdetails.RetryInfo)if!ok{continue}retryDelay:=retryInfo.GetRetryDelay()retryDelayDuration=time.Duration(retryDelay.Seconds)*time.Second+time.Duration(retryDelay.Nanos)*time.Nanosecondbreak}}ifretryDelayDuration!=0{log.Printf("processStream failed with a retryable error, retrying in %v",retryDelayDuration)time.Sleep(retryDelayDuration)}else{retries++ifretries>=retryLimit{returnfmt.Errorf("processStream retries exhausted: %w",err)}}// break the inner loop, and try to recover by starting a new streaming// ReadRows call at the last known good offset.break}else{// Reset retries after a successful response.retries=0}rc:=r.GetRowCount()ifrc >0{// Bookmark our progress in case of retries and send the rowblock on the channel.offset=offset+rc// We're making progress, reset retries.retries=0ch<-r}}}}// processArrow receives row blocks from a channel, and uses the provided Arrow// schema to decode the blocks into individual row messages for printing.  Will// continue to run until the channel is closed or the provided context is// cancelled.funcprocessArrow(ctxcontext.Context,schema[]byte,ch<-chan*storagepb.ReadRowsResponse)error{mem:=memory.NewGoAllocator()buf:=bytes.NewBuffer(schema)r,err:=ipc.NewReader(buf,ipc.WithAllocator(mem))iferr!=nil{returnerr}aschema:=r.Schema()for{select{case<-ctx.Done():// Context was cancelled.  Stop.returnctx.Err()caserows,ok:=<-ch:if!ok{// Channel closed, no further arrow messages.  Stop.returnnil}undecoded:=rows.GetArrowRecordBatch().GetSerializedRecordBatch()iflen(undecoded) >0{buf=bytes.NewBuffer(schema)buf.Write(undecoded)r,err=ipc.NewReader(buf,ipc.WithAllocator(mem),ipc.WithSchema(aschema))iferr!=nil{returnerr}forr.Next(){rec:=r.Record()err=printRecordBatch(rec)iferr!=nil{returnerr}}}}}}// processAvro receives row blocks from a channel, and uses the provided Avro// schema to decode the blocks into individual row messages for printing.  Will// continue to run until the channel is closed or the provided context is// cancelled.funcprocessAvro(ctxcontext.Context,schemastring,ch<-chan*storagepb.ReadRowsResponse)error{// Establish a decoder that can process blocks of messages using the// reference schema. All blocks share the same schema, so the decoder// can be long-lived.codec,err:=goavro.NewCodec(schema)iferr!=nil{returnfmt.Errorf("couldn't create codec: %w",err)}for{select{case<-ctx.Done():// Context was cancelled.  Stop.returnctx.Err()caserows,ok:=<-ch:if!ok{// Channel closed, no further avro messages.  Stop.returnnil}undecoded:=rows.GetAvroRows().GetSerializedBinaryRows()forlen(undecoded) >0{datum,remainingBytes,err:=codec.NativeFromBinary(undecoded)iferr!=nil{iferr==io.EOF{break}returnfmt.Errorf("decoding error with %d bytes remaining: %v",len(undecoded),err)}printDatum(datum)undecoded=remainingBytes}}}}

Java

importcom.google.api.gax.rpc.ServerStream;importcom.google.cloud.bigquery.storage.v1.ArrowRecordBatch;importcom.google.cloud.bigquery.storage.v1.ArrowSchema;importcom.google.cloud.bigquery.storage.v1.BigQueryReadClient;importcom.google.cloud.bigquery.storage.v1.CreateReadSessionRequest;importcom.google.cloud.bigquery.storage.v1.DataFormat;importcom.google.cloud.bigquery.storage.v1.ReadRowsRequest;importcom.google.cloud.bigquery.storage.v1.ReadRowsResponse;importcom.google.cloud.bigquery.storage.v1.ReadSession;importcom.google.cloud.bigquery.storage.v1.ReadSession.TableModifiers;importcom.google.cloud.bigquery.storage.v1.ReadSession.TableReadOptions;importcom.google.common.base.Preconditions;importcom.google.protobuf.Timestamp;importjava.io.IOException;importjava.util.ArrayList;importjava.util.List;importorg.apache.arrow.memory.BufferAllocator;importorg.apache.arrow.memory.RootAllocator;importorg.apache.arrow.vector.FieldVector;importorg.apache.arrow.vector.VectorLoader;importorg.apache.arrow.vector.VectorSchemaRoot;importorg.apache.arrow.vector.ipc.ReadChannel;importorg.apache.arrow.vector.ipc.message.MessageSerializer;importorg.apache.arrow.vector.types.pojo.Field;importorg.apache.arrow.vector.types.pojo.Schema;importorg.apache.arrow.vector.util.ByteArrayReadableSeekableByteChannel;publicclassStorageArrowSample{/*   * SimpleRowReader handles deserialization of the Apache Arrow-encoded row batches transmitted   * from the storage API using a generic datum decoder.   */privatestaticclassSimpleRowReaderimplementsAutoCloseable{BufferAllocatorallocator=newRootAllocator(Long.MAX_VALUE);// Decoder object will be reused to avoid re-allocation and too much garbage collection.privatefinalVectorSchemaRootroot;privatefinalVectorLoaderloader;publicSimpleRowReader(ArrowSchemaarrowSchema)throwsIOException{Schemaschema=MessageSerializer.deserializeSchema(newReadChannel(newByteArrayReadableSeekableByteChannel(arrowSchema.getSerializedSchema().toByteArray())));Preconditions.checkNotNull(schema);List<FieldVector>vectors=newArrayList<>();for(Fieldfield:schema.getFields()){vectors.add(field.createVector(allocator));}root=newVectorSchemaRoot(vectors);loader=newVectorLoader(root);}/**     * Sample method for processing Arrow data which only validates decoding.     *     * @param batch object returned from the ReadRowsResponse.     */publicvoidprocessRows(ArrowRecordBatchbatch)throwsIOException{org.apache.arrow.vector.ipc.message.ArrowRecordBatchdeserializedBatch=MessageSerializer.deserializeRecordBatch(newReadChannel(newByteArrayReadableSeekableByteChannel(batch.getSerializedRecordBatch().toByteArray())),allocator);loader.load(deserializedBatch);// Release buffers from batch (they are still held in the vectors in root).deserializedBatch.close();System.out.println(root.contentToTSVString());// Release buffers from vectors in root.root.clear();}@Overridepublicvoidclose(){root.close();allocator.close();}}publicstaticvoidmain(String...args)throwsException{// Sets your Google Cloud Platform project ID.// String projectId = "YOUR_PROJECT_ID";StringprojectId=args[0];IntegersnapshotMillis=null;if(args.length >1){snapshotMillis=Integer.parseInt(args[1]);}try(BigQueryReadClientclient=BigQueryReadClient.create()){Stringparent=String.format("projects/%s",projectId);// This example uses baby name data from the public datasets.StringsrcTable=String.format("projects/%s/datasets/%s/tables/%s","bigquery-public-data","usa_names","usa_1910_current");// We specify the columns to be projected by adding them to the selected fields,// and set a simple filter to restrict which rows are transmitted.TableReadOptionsoptions=TableReadOptions.newBuilder().addSelectedFields("name").addSelectedFields("number").addSelectedFields("state").setRowRestriction("state = \"WA\"").build();// Start specifying the read session we want created.ReadSession.BuildersessionBuilder=ReadSession.newBuilder().setTable(srcTable)// This API can also deliver data serialized in Apache Avro format.// This example leverages Apache Arrow..setDataFormat(DataFormat.ARROW).setReadOptions(options);// Optionally specify the snapshot time.  When unspecified, snapshot time is "now".if(snapshotMillis!=null){Timestampt=Timestamp.newBuilder().setSeconds(snapshotMillis/1000).setNanos((int)((snapshotMillis%1000)*1000000)).build();TableModifiersmodifiers=TableModifiers.newBuilder().setSnapshotTime(t).build();sessionBuilder.setTableModifiers(modifiers);}// Begin building the session creation request.CreateReadSessionRequest.Builderbuilder=CreateReadSessionRequest.newBuilder().setParent(parent).setReadSession(sessionBuilder).setMaxStreamCount(1);ReadSessionsession=client.createReadSession(builder.build());// Setup a simple reader and start a read session.try(SimpleRowReaderreader=newSimpleRowReader(session.getArrowSchema())){// Assert that there are streams available in the session.  An empty table may not have// data available.  If no sessions are available for an anonymous (cached) table, consider// writing results of a query to a named table rather than consuming cached results// directly.Preconditions.checkState(session.getStreamsCount() >0);// Use the first stream to perform reading.StringstreamName=session.getStreams(0).getName();ReadRowsRequestreadRowsRequest=ReadRowsRequest.newBuilder().setReadStream(streamName).build();// Process each block of rows as they arrive and decode using our simple row reader.ServerStream<ReadRowsResponse>stream=client.readRowsCallable().call(readRowsRequest);for(ReadRowsResponseresponse:stream){Preconditions.checkState(response.hasArrowRecordBatch());reader.processRows(response.getArrowRecordBatch());}}}}}

Python

fromgoogle.cloud.bigquery_storageimportBigQueryReadClient,types# TODO(developer): Set the project_id variable.# project_id = 'your-project-id'## The read session is created in this project. This project can be# different from that which contains the table.client=BigQueryReadClient()# This example reads baby name data from the public datasets.table="projects/{}/datasets/{}/tables/{}".format("bigquery-public-data","usa_names","usa_1910_current")requested_session=types.ReadSession()requested_session.table=table# This API can also deliver data serialized in Apache Arrow format.# This example leverages Apache Avro.requested_session.data_format=types.DataFormat.AVRO# We limit the output columns to a subset of those allowed in the table,# and set a simple filter to only report names from the state of# Washington (WA).requested_session.read_options.selected_fields=["name","number","state"]requested_session.read_options.row_restriction='state = "WA"'# Set a snapshot time if it's been specified.ifsnapshot_millis >0:snapshot_time=types.Timestamp()snapshot_time.FromMilliseconds(snapshot_millis)requested_session.table_modifiers.snapshot_time=snapshot_timeparent="projects/{}".format(project_id)session=client.create_read_session(parent=parent,read_session=requested_session,# We'll use only a single stream for reading data from the table. However,# if you wanted to fan out multiple readers you could do so by having a# reader process each individual stream.max_stream_count=1,)reader=client.read_rows(session.streams[0].name)# The read stream contains blocks of Avro-encoded bytes. The rows() method# uses the fastavro library to parse these blocks as an iterable of Python# dictionaries. Install fastavro with the following command:## pip install google-cloud-bigquery-storage[fastavro]rows=reader.rows(session)# Do any local processing by iterating over the rows. The# google-cloud-bigquery-storage client reconnects to the API after any# transient network errors or timeouts.names=set()states=set()# fastavro returns EOFError instead of StopIterationError starting v1.8.4.# See https://github.com/googleapis/python-bigquery-storage/pull/687try:forrowinrows:names.add(row["name"])states.add(row["state"])exceptEOFError:passprint("Got{} unique names in states:{}".format(len(names),", ".join(states)))

Additional resources

C++

The following list contains links to more resources related to theclient library for C++:

C#

The following list contains links to more resources related to theclient library for C#:

Go

The following list contains links to more resources related to theclient library for Go:

Java

The following list contains links to more resources related to theclient library for Java:

Node.js

The following list contains links to more resources related to theclient library for Node.js:

PHP

The following list contains links to more resources related to theclient library for PHP:

Python

The following list contains links to more resources related to theclient library for Python:

Ruby

The following list contains links to more resources related to theclient library for Ruby:

What's next?

For users of the pandas and integration to BigQuery, see the tutorialVisualizing BigQuery data in a Jupyter notebook.

Except as otherwise noted, the content of this page is licensed under theCreative Commons Attribution 4.0 License, and code samples are licensed under theApache 2.0 License. For details, see theGoogle Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025-12-15 UTC.