End-to-end user journeys for ML models

This document describes the user journeys for machine learning (ML) models thatare trained in BigQuery ML, including the statements and functions thatyou can use to work with ML models. BigQuery ML offers thefollowing types of ML models:

Model creation user journeys

The following table describes the statements and functions you can use to createand tune models:

Model categoryModel typeModel creationFeature preprocessingHyperparameter tuning1Model weightsFeature & training infoTutorials
Supervised learningLinear & logistic regressionCREATE MODELAutomatic preprocessing

Manual preprocessing
Hyperparameter tuning

ML.TRIAL
_INFO
ML.WEIGHTSML.FEATURE
_INFO


ML.TRAINING
_INFO
Use linear regression to predict penguin weight

Perform classification with a logistic regression model
Deep neural networks (DNN)CREATE MODELAutomatic preprocessing

Manual preprocessing
Hyperparameter tuning

ML.TRIAL
_INFO
N/A2ML.FEATURE
_INFO


ML.TRAINING
_INFO
N/A
Wide & Deep networksCREATE MODELAutomatic preprocessing

Manual preprocessing
Hyperparameter tuning

ML.TRIAL
_INFO
N/A2ML.FEATURE
_INFO


ML.TRAINING
_INFO
N/A
Boosted treesCREATE MODELAutomatic preprocessing

Manual preprocessing
Hyperparameter tuning

ML.TRIAL
_INFO
N/A2ML.FEATURE
_INFO


ML.TRAINING
_INFO
Perform classification with a boosted trees model
Random forestCREATE MODELAutomatic preprocessing

Manual preprocessing
Hyperparameter tuning

ML.TRIAL
_INFO
N/A2ML.FEATURE
_INFO


ML.TRAINING
_INFO
N/A
AutoML classification & regressionCREATE MODELAutoML automatically performs feature engineeringAutoML automatically performs hyperparameter tuningN/A2ML.FEATURE
_INFO


ML.TRAINING
_INFO
N/A
Unsupervised learningK-meansCREATE MODELAutomatic preprocessing

Manual preprocessing
Hyperparameter tuning

ML.TRIAL
_INFO
ML.CENTROIDSML.FEATURE
_INFO


ML.TRAINING
_INFO
Find clusters in bike station data
Matrix factorizationCREATE MODELN/AHyperparameter tuning

ML.TRIAL
_INFO
ML.WEIGHTSML.FEATURE
_INFO


ML.TRAINING
_INFO
Generate movie recommendations using explicit feedback

Generate content recommendations using implicit feedback
Principal component analysis (PCA)CREATE MODELAutomatic preprocessing

Manual preprocessing
N/AML.PRINCIPAL
_COMPONENTS


ML.PRINCIPAL
_COMPONENT
_INFO
ML.FEATURE
_INFO


ML.TRAINING
_INFO
N/A
AutoencoderCREATE MODELAutomatic preprocessing

Manual preprocessing
Hyperparameter tuning

ML.TRIAL
_INFO
N/A2ML.FEATURE
_INFO


ML.TRAINING
_INFO
N/A
Transform-onlyTransform-onlyCREATE MODELManual preprocessingN/AN/AML.FEATURE
_INFO
N/A

1For a step-by-step example of using hyperparameter tuning, seeImprove model performance with hyperparameter tuning.

2BigQuery ML doesn't offer a function to retrieve theweights for this model. To see the weights of the model, you canexport the model from BigQuery ML to Cloud Storage and then use theXGBoost library or the TensorFlow library to visualize the treestructure for tree models or the graph structure for neural networks. For moreinformation, seeEXPORT MODEL andExport a BigQuery ML model for online prediction.

Model use user journeys

The following table describes the statements and functions you can use toevaluate, explain, and get predictions from models:

Model categoryModel typeEvaluationInferenceAI explanationModel monitoring
Supervised learningLinear & logistic regressionML.EVALUATE

ML.CONFUSION
_MATRIX
1

ML.ROC_CURVE2
ML.PREDICT

ML.TRANSFORM
ML.EXPLAIN_PREDICT3

ML.GLOBAL_EXPLAIN

ML.ADVANCED_WEIGHTS5
ML.DESCRIBE_DATA

ML.VALIDATE_DATA
_DRIFT


ML.VALIDATE_DATA
_SKEW


ML.TFDV_DESCRIBE

ML.TFDV_VALIDATE
Deep neural networks (DNN)ML.EVALUATE

ML.CONFUSION
_MATRIX
1

ML.ROC_CURVE2
ML.PREDICT

ML.TRANSFORM
ML.EXPLAIN_PREDICT3

ML.GLOBAL_EXPLAIN

ML.ADVANCED_WEIGHTS5
ML.DESCRIBE_DATA

ML.VALIDATE_DATA
_DRIFT


ML.VALIDATE_DATA
_SKEW


ML.TFDV_DESCRIBE

ML.TFDV_VALIDATE
Wide & Deep networksML.EVALUATE

ML.CONFUSION
_MATRIX
1

ML.ROC_CURVE2
ML.PREDICT

ML.TRANSFORM
ML.EXPLAIN_PREDICT3

ML.GLOBAL_EXPLAIN

ML.ADVANCED_WEIGHTS5
ML.DESCRIBE_DATA

ML.VALIDATE_DATA
_DRIFT


ML.VALIDATE_DATA
_SKEW


ML.TFDV_DESCRIBE

ML.TFDV_VALIDATE
Boosted treesML.EVALUATE

ML.CONFUSION
_MATRIX
1

ML.ROC_CURVE2
ML.PREDICT

ML.TRANSFORM
ML.EXPLAIN_PREDICT3

ML.GLOBAL_EXPLAIN

ML.FEATURE_IMPORTANCE4
ML.DESCRIBE_DATA

ML.VALIDATE_DATA
_DRIFT


ML.VALIDATE_DATA
_SKEW


ML.TFDV_DESCRIBE

ML.TFDV_VALIDATE
Random forestML.EVALUATE

ML.CONFUSION
_MATRIX
1

ML.ROC_CURVE2
ML.PREDICT

ML.TRANSFORM
ML.EXPLAIN_PREDICT3

ML.GLOBAL_EXPLAIN

ML.FEATURE_IMPORTANCE4
ML.DESCRIBE_DATA

ML.VALIDATE_DATA
_DRIFT


ML.VALIDATE_DATA
_SKEW


ML.TFDV_DESCRIBE

ML.TFDV_VALIDATE
AutoML classification & regressionML.EVALUATE

ML.CONFUSION
_MATRIX
1

ML.ROC_CURVE2
ML.PREDICTML.GLOBAL_EXPLAINML.DESCRIBE_DATA

ML.VALIDATE_DATA
_DRIFT


ML.VALIDATE_DATA
_SKEW


ML.TFDV_DESCRIBE

ML.TFDV_VALIDATE
Unsupervised learningK-meansML.EVALUATEML.PREDICT
ML.DETECT
_ANOMALIES


ML.TRANSFORM
N/AML.DESCRIBE_DATA

ML.VALIDATE_DATA
_DRIFT


ML.VALIDATE_DATA
_SKEW


ML.TFDV_DESCRIBE

ML.TFDV_VALIDATE
Matrix factorizationML.EVALUATEML.RECOMMEND

ML.GENERATE
_EMBEDDING
N/AN/A
Principal component analysis (PCA)ML.EVALUATEML.PREDICT
ML.GENERATE
_EMBEDDING

ML.DETECT
_ANOMALIES


ML.TRANSFORM
N/AML.DESCRIBE_DATA

ML.VALIDATE_DATA
_DRIFT


ML.VALIDATE_DATA
_SKEW


ML.TFDV_DESCRIBE

ML.TFDV_VALIDATE
AutoencoderML.EVALUATEML.PREDICT

ML.GENERATE
_EMBEDDING

ML.DETECT
_ANOMALIES


ML.RECONSTRUCTION
_LOSS


ML.TRANSFORM
N/AML.DESCRIBE_DATA

ML.VALIDATE_DATA
_DRIFT


ML.VALIDATE_DATA
_SKEW


ML.TFDV_DESCRIBE

ML.TFDV_VALIDATE
Transform-onlyTransform-onlyN/AML.TRANSFORMN/AN/A

1ML.CONFUSION_MATRIX is only applicable to classification models.

2ML.ROC_CURVE is only applicable to binary classification models.

3TheML.EXPLAIN_PREDICT function encompasses theML.PREDICT function because its output is a superset of theresults ofML.PREDICT.

4To understand the difference betweenML.GLOBAL_EXPLAIN andML.FEATURE_IMPORTANCE, see theExplainable AI overview.

5TheML.ADVANCED_WEIGHTS function encompasses theML.WEIGHTS function because its output is a superset of theresults ofML.WEIGHTS.

Except as otherwise noted, the content of this page is licensed under theCreative Commons Attribution 4.0 License, and code samples are licensed under theApache 2.0 License. For details, see theGoogle Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2026-02-18 UTC.