PyTorch中实现ResNet使用CIFAR-10数据集进行训练准确率90%
这是一段在 PyTorch 中实现 ResNet(残差网络)并使用 CIFAR-10 数据集进行训练和测试的代码。ResNet 是一种深度学习模型,由于其独特的“跳跃连接”设计,可以有效地解决深度神经网络中的梯度消失问题。CIFAR-10 是一个常用的图像分类数据集,包含10个类别的60000张32x32彩色图像。
下面我们会分步解析这段代码。
首先,我们看到导入了必要的 PyTorch 库和模块,包括神经网络(nn)、优化器(optim)、学习率调度器(lr_scheduler)、数据集(datasets)、数据转换(transforms)、数据加载器(DataLoader)等。
import torchimport torch.nn as nnimport torch.optim as optimfrom torch.optim.lr_scheduler import StepLR, ReduceLROnPlateaufrom torchvision import datasets, transformsfrom torch.utils.data import DataLoaderimport osimport torch.backends.cudnn as cudnnimport torch.nn.functional as F之后定义了一个名为`progress_bar`的函数,这个函数用于在控制台上显示训练或测试的进度。
def progress_bar(current, total, msg=None): progress = current / total bar_length = 20 # Length of progress bar to display filled_length = int(round(bar_length * progress)) bar = '=' * filled_length + '-' * (bar_length - filled_length) if msg: print(f'\r[{bar}] {progress * 100:.1f}% {msg}', end='') else: print(f'\r[{bar}] {progress * 100:.1f}%', end='') if current == total - 1: print()接下来的部分定义了 ResNet 模型。其中`conv3x3`函数用于创建一个3x3的卷积层,`BasicBlock`类代表了 ResNet 中的基础块,`ResNet`类则是整个网络的架构。特别地,`ResNet18`函数返回一个具有18层的 ResNet 模型(包括卷积层和全连接层)。
# Model definitiondef conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(in_planes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = torch.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = torch.relu(out) return outclass ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = conv3x3(3,64) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512*block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = torch.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return outdef ResNet18(): return ResNet(BasicBlock, [2,2,2,2])然后是`train`和`test`函数,分别用于进行模型训练和测试。在`train`函数中,模型在每个 epoch 中对训练数据进行一次完整的前向传播和反向传播。同时,通过调用`progress_bar`函数,可以实时看到训练过程中的损失和准确率。在`test`函数中,模型在每个 epoch 结束后对测试数据进行一次前向传播,以验证模型的泛化能力。
# Trainingdef train(epoch): print('\nEpoch: %d' % epoch) model.train() train_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(trainloader): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss/(batch_idx+1), 100.*correct/total, correct, total)) scheduler.step()# Testingdef test(epoch): global best_acc model.eval() test_loss = 0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(testloader): inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs) loss = criterion(outputs, targets) test_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total)) # Save checkpoint. acc = 100.*correct/total if acc > best_acc: print('Saving..') state = { 'model': model.state_dict(), 'acc': acc, 'epoch': epoch, } if not os.path.isdir('checkpoint'): os.mkdir('checkpoint') torch.save(state, './checkpoint/ckpt.pth') best_acc = acc最后,我们看到在主函数中,首先进行了一些预处理操作,包括定义数据的转换方法、加载训练和测试数据集,并将数据封装进 DataLoader 中。接着,创建了一个 ResNet18 模型,并将其转移到了 GPU(如果可用)。然后,定义了损失函数(交叉熵损失)和优化器(随机梯度下降),并设置了学习率调度器,使得在每50个 epoch 后,学习率乘以 0.1。最后,开始进行200个 epoch 的训练和测试,每个 epoch 结束后,如果在测试集上的准确率达到新的最高值,就保存当前的模型参数。
if __name__ == '__main__': best_acc = 0 # Start with 0 accuracy transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = DataLoader(testset, batch_size=100, shuffle=False, num_workers=2) # Instantiate model device = 'cuda' if torch.cuda.is_available() else 'cpu' model = ResNet18().to(device) if device == 'cuda': model = torch.nn.DataParallel(model) cudnn.benchmark = True # Loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) scheduler = StepLR(optimizer, step_size=50, gamma=0.1) start_epoch = 0 # Run training and testing for epoch in range(start_epoch, start_epoch+200): train(epoch) test(epoch)通过这段代码,我们可以看到使用 PyTorch 实现、训练和测试深度学习模型的基本步骤,包括定义模型架构、设置损失函数和优化器、进行前向传播和反向传播、调整学习率、保存和加载模等。
下面是我的运行过程。

在此,我想推荐大家加入我们的神经网络交流学习群。群号是732818397。在这个群里,我们可以一起学习和探讨关于神经网络的各种问题和挑战。无论你是初学者还是有经验的专业人士,我们都欢迎你的加入。希望我们能在学习和交流的过程中共同进步,共同提高。期待在群里遇见你。
扫一扫分享内容