ee.ImageCollection.min Stay organized with collections Save and categorize content based on your preferences.
Page Summary
The
ImageCollection.min()method reduces an image collection by calculating the minimum value for each pixel across all images in the collection for matching bands.The
ImageCollection.min()method returns a single Image.The method takes the image collection to be reduced as an argument.
Examples are provided in both JavaScript and Python to demonstrate its usage.
| Usage | Returns |
|---|---|
ImageCollection.min() | Image |
| Argument | Type | Details |
|---|---|---|
this:collection | ImageCollection | The image collection to reduce. |
Examples
Code Editor (JavaScript)
// Sentinel-2 image collection for July 2021 intersecting a point of interest.// Reflectance, cloud probability, and scene classification bands are selected.varcol=ee.ImageCollection('COPERNICUS/S2_SR').filterDate('2021-07-01','2021-08-01').filterBounds(ee.Geometry.Point(-122.373,37.448)).select('B.*|MSK_CLDPRB|SCL');// Visualization parameters for reflectance RGB.varvisRefl={bands:['B11','B8','B3'],min:0,max:4000};Map.setCenter(-122.373,37.448,9);Map.addLayer(col,visRefl,'Collection reference',false);// Reduce the collection to a single image using a variety of methods.varmean=col.mean();Map.addLayer(mean,visRefl,'Mean (B11, B8, B3)');varmedian=col.median();Map.addLayer(median,visRefl,'Median (B11, B8, B3)');varmin=col.min();Map.addLayer(min,visRefl,'Min (B11, B8, B3)');varmax=col.max();Map.addLayer(max,visRefl,'Max (B11, B8, B3)');varsum=col.sum();Map.addLayer(sum,{bands:['MSK_CLDPRB'],min:0,max:500},'Sum (MSK_CLDPRB)');varproduct=col.product();Map.addLayer(product,{bands:['MSK_CLDPRB'],min:0,max:1e10},'Product (MSK_CLDPRB)');// ee.ImageCollection.mode returns the most common value. If multiple mode// values occur, the minimum mode value is returned.varmode=col.mode();Map.addLayer(mode,{bands:['SCL'],min:1,max:11},'Mode (pixel class)');// ee.ImageCollection.count returns the frequency of valid observations. Here,// image pixels are masked based on cloud probability to add valid observation// variability to the collection. Note that pixels with no valid observations// are masked out of the returned image.varnotCloudCol=col.map(function(img){returnimg.updateMask(img.select('MSK_CLDPRB').lte(10));});varcount=notCloudCol.count();Map.addLayer(count,{min:1,max:5},'Count (not cloud observations)');// ee.ImageCollection.mosaic composites images according to their position in// the collection (priority is last to first) and pixel mask status, where// invalid (mask value 0) pixels are filled by preceding valid (mask value >0)// pixels.varmosaic=notCloudCol.mosaic();Map.addLayer(mosaic,visRefl,'Mosaic (B11, B8, B3)');
Python setup
See the Python Environment page for information on the Python API and usinggeemap for interactive development.
importeeimportgeemap.coreasgeemap
Colab (Python)
# Sentinel-2 image collection for July 2021 intersecting a point of interest.# Reflectance, cloud probability, and scene classification bands are selected.col=(ee.ImageCollection('COPERNICUS/S2_SR').filterDate('2021-07-01','2021-08-01').filterBounds(ee.Geometry.Point(-122.373,37.448)).select('B.*|MSK_CLDPRB|SCL'))# Visualization parameters for reflectance RGB.vis_refl={'bands':['B11','B8','B3'],'min':0,'max':4000}m=geemap.Map()m.set_center(-122.373,37.448,9)m.add_layer(col,vis_refl,'Collection reference',False)# Reduce the collection to a single image using a variety of methods.mean=col.mean()m.add_layer(mean,vis_refl,'Mean (B11, B8, B3)')median=col.median()m.add_layer(median,vis_refl,'Median (B11, B8, B3)')min=col.min()m.add_layer(min,vis_refl,'Min (B11, B8, B3)')max=col.max()m.add_layer(max,vis_refl,'Max (B11, B8, B3)')sum=col.sum()m.add_layer(sum,{'bands':['MSK_CLDPRB'],'min':0,'max':500},'Sum (MSK_CLDPRB)')product=col.product()m.add_layer(product,{'bands':['MSK_CLDPRB'],'min':0,'max':1e10},'Product (MSK_CLDPRB)',)# ee.ImageCollection.mode returns the most common value. If multiple mode# values occur, the minimum mode value is returned.mode=col.mode()m.add_layer(mode,{'bands':['SCL'],'min':1,'max':11},'Mode (pixel class)')# ee.ImageCollection.count returns the frequency of valid observations. Here,# image pixels are masked based on cloud probability to add valid observation# variability to the collection. Note that pixels with no valid observations# are masked out of the returned image.not_cloud_col=col.map(lambdaimg:img.updateMask(img.select('MSK_CLDPRB').lte(10)))count=not_cloud_col.count()m.add_layer(count,{'min':1,'max':5},'Count (not cloud observations)')# ee.ImageCollection.mosaic composites images according to their position in# the collection (priority is last to first) and pixel mask status, where# invalid (mask value 0) pixels are filled by preceding valid (mask value >0)# pixels.mosaic=not_cloud_col.mosaic()m.add_layer(mosaic,vis_refl,'Mosaic (B11, B8, B3)')m
Except as otherwise noted, the content of this page is licensed under theCreative Commons Attribution 4.0 License, and code samples are licensed under theApache 2.0 License. For details, see theGoogle Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-10-06 UTC.