ee.FeatureCollection.randomColumn Stay organized with collections Save and categorize content based on your preferences.
Page Summary
This function adds a column of deterministic pseudorandom numbers to a FeatureCollection.
The random numbers can follow either a 'uniform' distribution (range [0, 1)) or a 'normal' distribution (mean 0, standard deviation 1).
Arguments control the column name, the seed for reproducibility, the distribution type, and the properties used to uniquely identify elements for number generation.
The function returns the modified FeatureCollection with the added random column.
| Usage | Returns |
|---|---|
FeatureCollection.randomColumn(columnName,seed,distribution,rowKeys) | FeatureCollection |
| Argument | Type | Details |
|---|---|---|
this:collection | FeatureCollection | The input collection to which to add a random column. |
columnName | String, default: "random" | The name of the column to add. |
seed | Long, default: 0 | A seed used when generating the random numbers. |
distribution | String, default: "uniform" | The distribution type of random numbers to produce; one of 'uniform' or 'normal'. |
rowKeys | List, optional | A list of properties that should uniquely and repeatably identify an element of the collection, used to generate the random number. Defaults to [system:index]. |
Examples
Code Editor (JavaScript)
// FeatureCollection of power plants in Belgium.varfc=ee.FeatureCollection('WRI/GPPD/power_plants').filter('country_lg == "Belgium"');print('N features in collection',fc.size());// Add a uniform distribution random value column to the FeatureCollection.fc=fc.randomColumn();// Randomly split the collection into two sets, 30% and 70% of the total.varrandomSample30=fc.filter('random < 0.3');print('N features in 30% sample',randomSample30.size());varrandomSample70=fc.filter('random >= 0.3');print('N features in 70% sample',randomSample70.size());
Python setup
See the Python Environment page for information on the Python API and usinggeemap for interactive development.
importeeimportgeemap.coreasgeemap
Colab (Python)
# FeatureCollection of power plants in Belgium.fc=ee.FeatureCollection('WRI/GPPD/power_plants').filter('country_lg == "Belgium"')display('N features in collection:',fc.size())# Add a uniform distribution random value column to the FeatureCollection.fc=fc.randomColumn()# Randomly split the collection into two sets, 30% and 70% of the total.random_sample_30=fc.filter('random < 0.3')display('N features in 30% sample:',random_sample_30.size())random_sample_70=fc.filter('random >= 0.3')display('N features in 70% sample:',random_sample_70.size())
Except as otherwise noted, the content of this page is licensed under theCreative Commons Attribution 4.0 License, and code samples are licensed under theApache 2.0 License. For details, see theGoogle Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-04-01 UTC.