ee.FeatureCollection.kriging Stay organized with collections Save and categorize content based on your preferences.
Page Summary
The
krigingmethod on aFeatureCollectionreturns anImagerepresenting the results of sampling a Kriging estimator at each pixel.The method requires specifying the
propertyNameto be estimated, the semivariogramshape,range,sill, andnugget.Optional arguments include
maxDistanceandreducerto control the inclusion of features and collapsing of overlapping points.Examples demonstrate using
krigingto generate an interpolated surface of air temperature from sampled points in both JavaScript and Python.
| Usage | Returns |
|---|---|
FeatureCollection.kriging(propertyName, shape, range, sill, nugget,maxDistance,reducer) | Image |
| Argument | Type | Details |
|---|---|---|
this:collection | FeatureCollection | Feature collection to use as source data for the estimation. |
propertyName | String | Property to be estimated (must be numeric). |
shape | String | Semivariogram shape (one of {exponential, gaussian, spherical}). |
range | Float | Semivariogram range, in meters. |
sill | Float | Semivariogram sill. |
nugget | Float | Semivariogram nugget. |
maxDistance | Float, default: null | Radius which determines which features are included in each pixel's computation, in meters. Defaults to the semivariogram's range. |
reducer | Reducer, default: null | Reducer used to collapse the 'propertyName' value of overlapping points into a single value. |
Examples
Code Editor (JavaScript)
/** * This example generates an interpolated surface using kriging from a * FeatureCollection of random points that simulates a table of air temperature * at ocean weather buoys. */// Average air temperature at 2m height for June, 2020.varimg=ee.Image('ECMWF/ERA5/MONTHLY/202006').select(['mean_2m_air_temperature'],['tmean']);// Region of interest: South Pacific Ocean.varroi=ee.Geometry.Polygon([[[-156.053,-16.240],[-156.053,-44.968],[-118.633,-44.968],[-118.633,-16.240]]],null,false);// Sample the mean June 2020 temperature surface at random points in the ROI.vartmeanFc=img.sample({region:roi,scale:25000,numPixels:50,geometries:true});// 250// Generate an interpolated surface from the points using kriging; parameters// are set according to interpretation of an unshown semivariogram. See section// 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.vartmeanImg=tmeanFc.kriging({propertyName:'tmean',shape:'gaussian',range:2.8e6,sill:164,nugget:0.05,maxDistance:1.8e6,reducer:ee.Reducer.mean()});// Display the results on the map.Map.setCenter(-137.47,-30.47,3);Map.addLayer(tmeanImg,{min:279,max:300},'Temperature (K)');
Python setup
See the Python Environment page for information on the Python API and usinggeemap for interactive development.
importeeimportgeemap.coreasgeemap
Colab (Python)
# This example generates an interpolated surface using kriging from a# FeatureCollection of random points that simulates a table of air temperature# at ocean weather buoys.# Average air temperature at 2m height for June, 2020.img=ee.Image('ECMWF/ERA5/MONTHLY/202006').select(['mean_2m_air_temperature'],['tmean'])# Region of interest: South Pacific Ocean.roi=ee.Geometry.Polygon([[[-156.053,-16.240],[-156.053,-44.968],[-118.633,-44.968],[-118.633,-16.240],]],None,False,)# Sample the mean June 2020 temperature surface at random points in the ROI.tmean_fc=img.sample(region=roi,scale=25000,numPixels=50,geometries=True)# Generate an interpolated surface from the points using kriging parameters# are set according to interpretation of an unshown semivariogram. See section# 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.tmean_img=tmean_fc.kriging(propertyName='tmean',shape='gaussian',range=2.8e6,sill=164,nugget=0.05,maxDistance=1.8e6,reducer=ee.Reducer.mean(),)# Display the results on the map.m=geemap.Map()m.set_center(-137.47,-30.47,3)m.add_layer(tmean_img,{'min':279,'max':300,'min':279,'max':300},'Temperature (K)',)m
Except as otherwise noted, the content of this page is licensed under theCreative Commons Attribution 4.0 License, and code samples are licensed under theApache 2.0 License. For details, see theGoogle Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-10-06 UTC.