Announcement: All noncommercial projects registered to use Earth Engine beforeApril 15, 2025 mustverify noncommercial eligibility to maintain access. If you have not verified by September 26, 2025, your access may be on hold.

ee.Classifier.smileGradientTreeBoost

  • Theee.Classifier.smileGradientTreeBoost method creates an empty Gradient Tree Boost classifier.

  • This method takes arguments such as the number of trees, shrinkage, sampling rate, max nodes, loss function, and seed, and returns a Classifier object.

  • The number of trees and the loss function are key parameters for configuring the classifier.

  • The provided examples demonstrate training and evaluating a gradient boosting classifier using Earth Engine in both JavaScript and Python.

Creates an empty Gradient Tree Boost classifier.

UsageReturns
ee.Classifier.smileGradientTreeBoost(numberOfTrees,shrinkage,samplingRate,maxNodes,loss,seed)Classifier
ArgumentTypeDetails
numberOfTreesIntegerThe number of decision trees to create.
shrinkageFloat, default: 0.005The shrinkage parameter in (0, 1] controls the learning rate of procedure.
samplingRateFloat, default: 0.7The sampling rate for stochastic tree boosting.
maxNodesInteger, default: nullThe maximum number of leaf nodes in each tree. If unspecified, defaults to no limit.
lossString, default: "LeastAbsoluteDeviation"Loss function for regression. One of: LeastSquares, LeastAbsoluteDeviation, Huber.
seedInteger, default: 0The randomization seed.

Examples

Code Editor (JavaScript)

// A Sentinel-2 surface reflectance image, reflectance bands selected,// serves as the source for training and prediction in this contrived example.varimg=ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG').select('B.*');// ESA WorldCover land cover map, used as label source in classifier training.varlc=ee.Image('ESA/WorldCover/v100/2020');// Remap the land cover class values to a 0-based sequential series.varclassValues=[10,20,30,40,50,60,70,80,90,95,100];varremapValues=ee.List.sequence(0,10);varlabel='lc';lc=lc.remap(classValues,remapValues).rename(label).toByte();// Add land cover as a band of the reflectance image and sample 100 pixels at// 10 m scale from each land cover class within a region of interest.varroi=ee.Geometry.Rectangle(-122.347,37.743,-122.024,37.838);varsample=img.addBands(lc).stratifiedSample({numPoints:100,classBand:label,region:roi,scale:10,geometries:true});// Add a random value field to the sample and use it to approximately split 80%// of the features into a training set and 20% into a validation set.sample=sample.randomColumn();vartrainingSample=sample.filter('random <= 0.8');varvalidationSample=sample.filter('random > 0.8');// Train a 10-tree gradient boosting classifier from the training sample.vartrainedClassifier=ee.Classifier.smileGradientTreeBoost(10).train({features:trainingSample,classProperty:label,inputProperties:img.bandNames()});// Get information about the trained classifier.print('Results of trained classifier',trainedClassifier.explain());// Get a confusion matrix and overall accuracy for the training sample.vartrainAccuracy=trainedClassifier.confusionMatrix();print('Training error matrix',trainAccuracy);print('Training overall accuracy',trainAccuracy.accuracy());// Get a confusion matrix and overall accuracy for the validation sample.validationSample=validationSample.classify(trainedClassifier);varvalidationAccuracy=validationSample.errorMatrix(label,'classification');print('Validation error matrix',validationAccuracy);print('Validation accuracy',validationAccuracy.accuracy());// Classify the reflectance image from the trained classifier.varimgClassified=img.classify(trainedClassifier);// Add the layers to the map.varclassVis={min:0,max:10,palette:['006400','ffbb22','ffff4c','f096ff','fa0000','b4b4b4','f0f0f0','0064c8','0096a0','00cf75','fae6a0']};Map.setCenter(-122.184,37.796,12);Map.addLayer(img,{bands:['B11','B8','B3'],min:100,max:3500},'img');Map.addLayer(lc,classVis,'lc');Map.addLayer(imgClassified,classVis,'Classified');Map.addLayer(roi,{color:'white'},'ROI',false,0.5);Map.addLayer(trainingSample,{color:'black'},'Training sample',false);Map.addLayer(validationSample,{color:'white'},'Validation sample',false);

Python setup

See the Python Environment page for information on the Python API and usinggeemap for interactive development.

importeeimportgeemap.coreasgeemap

Colab (Python)

# A Sentinel-2 surface reflectance image, reflectance bands selected,# serves as the source for training and prediction in this contrived example.img=ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG').select('B.*')# ESA WorldCover land cover map, used as label source in classifier training.lc=ee.Image('ESA/WorldCover/v100/2020')# Remap the land cover class values to a 0-based sequential series.class_values=[10,20,30,40,50,60,70,80,90,95,100]remap_values=ee.List.sequence(0,10)label='lc'lc=lc.remap(class_values,remap_values).rename(label).toByte()# Add land cover as a band of the reflectance image and sample 100 pixels at# 10 m scale from each land cover class within a region of interest.roi=ee.Geometry.Rectangle(-122.347,37.743,-122.024,37.838)sample=img.addBands(lc).stratifiedSample(numPoints=100,classBand=label,region=roi,scale=10,geometries=True)# Add a random value field to the sample and use it to approximately split 80%# of the features into a training set and 20% into a validation set.sample=sample.randomColumn()training_sample=sample.filter('random <= 0.8')validation_sample=sample.filter('random > 0.8')# Train a 10-tree gradient boosting classifier from the training sample.trained_classifier=ee.Classifier.smileGradientTreeBoost(10).train(features=training_sample,classProperty=label,inputProperties=img.bandNames(),)# Get information about the trained classifier.display('Results of trained classifier',trained_classifier.explain())# Get a confusion matrix and overall accuracy for the training sample.train_accuracy=trained_classifier.confusionMatrix()display('Training error matrix',train_accuracy)display('Training overall accuracy',train_accuracy.accuracy())# Get a confusion matrix and overall accuracy for the validation sample.validation_sample=validation_sample.classify(trained_classifier)validation_accuracy=validation_sample.errorMatrix(label,'classification')display('Validation error matrix',validation_accuracy)display('Validation accuracy',validation_accuracy.accuracy())# Classify the reflectance image from the trained classifier.img_classified=img.classify(trained_classifier)# Add the layers to the map.class_vis={'min':0,'max':10,'palette':['006400','ffbb22','ffff4c','f096ff','fa0000','b4b4b4','f0f0f0','0064c8','0096a0','00cf75','fae6a0',],}m=geemap.Map()m.set_center(-122.184,37.796,12)m.add_layer(img,{'bands':['B11','B8','B3'],'min':100,'max':3500},'img')m.add_layer(lc,class_vis,'lc')m.add_layer(img_classified,class_vis,'Classified')m.add_layer(roi,{'color':'white'},'ROI',False,0.5)m.add_layer(training_sample,{'color':'black'},'Training sample',False)m.add_layer(validation_sample,{'color':'white'},'Validation sample',False)m

Except as otherwise noted, the content of this page is licensed under theCreative Commons Attribution 4.0 License, and code samples are licensed under theApache 2.0 License. For details, see theGoogle Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2023-10-06 UTC.