Announcement: All noncommercial projects registered to use Earth Engine beforeApril 15, 2025 mustverify noncommercial eligibility to maintain access. If you have not verified by September 26, 2025, your access may be on hold.

ee.Classifier.libsvm

  • Theee.Classifier.libsvm() function creates an empty Support Vector Machine classifier.

  • It returns a Classifier object and accepts various arguments to configure the SVM type, kernel, and other parameters.

  • The examples demonstrate how to use the classifier to train and classify an image using land cover data.

Creates an empty Support Vector Machine classifier.

UsageReturns
ee.Classifier.libsvm(decisionProcedure,svmType,kernelType,shrinking,degree,gamma,coef0,cost,nu,terminationEpsilon,lossEpsilon,oneClass)Classifier
ArgumentTypeDetails
decisionProcedureString, default: "Voting"The decision procedure to use for classification. Either 'Voting' or 'Margin'. Not used for regression.
svmTypeString, default: "C_SVC"The SVM type. One of `C_SVC`, `NU_SVC`, `ONE_CLASS`, `EPSILON_SVR`, or `NU_SVR`.
kernelTypeString, default: "LINEAR"The kernel type. One of LINEAR (u′×v), POLY ((γ×u′×v + coef₀)ᵈᵉᵍʳᵉᵉ), RBF (exp(-γ×|u-v|²)), or SIGMOID (tanh(γ×u′×v + coef₀)).
shrinkingBoolean, default: trueWhether to use shrinking heuristics.
degreeInteger, default: nullThe degree of polynomial. Valid for POLY kernels.
gammaFloat, default: nullThe gamma value in the kernel function. Defaults to the reciprocal of the number of features. Valid for POLY, RBF, and SIGMOID kernels.
coef0Float, default: nullThe coef₀ value in the kernel function. Defaults to 0. Valid for POLY and SIGMOID kernels.
costFloat, default: nullThe cost (C) parameter. Defaults to 1. Only valid for C-SVC, epsilon-SVR, and nu-SVR.
nuFloat, default: nullThe nu parameter. Defaults to 0.5. Only valid for nu-SVC, one-class SVM, and nu-SVR.
terminationEpsilonFloat, default: nullThe termination criterion tolerance (e). Defaults to 0.001. Only valid for epsilon-SVR.
lossEpsilonFloat, default: nullThe epsilon in the loss function (p). Defaults to 0.1. Only valid for epsilon-SVR.
oneClassInteger, default: nullThe class of the training data on which to train in a one-class SVM. Defaults to 0. Only valid for one-class SVM. Possible values are 0 and 1. The classifier output is binary (0/1) and will match this class value for the data determined to be in the class.

Examples

Code Editor (JavaScript)

// A Sentinel-2 surface reflectance image, reflectance bands selected,// serves as the source for training and prediction in this contrived example.varimg=ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG').select('B.*');// ESA WorldCover land cover map, used as label source in classifier training.varlc=ee.Image('ESA/WorldCover/v100/2020');// Remap the land cover class values to a 0-based sequential series.varclassValues=[10,20,30,40,50,60,70,80,90,95,100];varremapValues=ee.List.sequence(0,10);varlabel='lc';lc=lc.remap(classValues,remapValues).rename(label).toByte();// Add land cover as a band of the reflectance image and sample 100 pixels at// 10 m scale from each land cover class within a region of interest.varroi=ee.Geometry.Rectangle(-122.347,37.743,-122.024,37.838);varsample=img.addBands(lc).stratifiedSample({numPoints:100,classBand:label,region:roi,scale:10,geometries:true});// Add a random value field to the sample and use it to approximately split 80%// of the features into a training set and 20% into a validation set.sample=sample.randomColumn();vartrainingSample=sample.filter('random <= 0.8');varvalidationSample=sample.filter('random > 0.8');// Train an SVM classifier (C-SVM classification, voting decision procedure,// linear kernel) from the training sample.vartrainedClassifier=ee.Classifier.libsvm().train({features:trainingSample,classProperty:label,inputProperties:img.bandNames()});// Get information about the trained classifier.print('Results of trained classifier',trainedClassifier.explain());// Get a confusion matrix and overall accuracy for the training sample.vartrainAccuracy=trainedClassifier.confusionMatrix();print('Training error matrix',trainAccuracy);print('Training overall accuracy',trainAccuracy.accuracy());// Get a confusion matrix and overall accuracy for the validation sample.validationSample=validationSample.classify(trainedClassifier);varvalidationAccuracy=validationSample.errorMatrix(label,'classification');print('Validation error matrix',validationAccuracy);print('Validation accuracy',validationAccuracy.accuracy());// Classify the reflectance image from the trained classifier.varimgClassified=img.classify(trainedClassifier);// Add the layers to the map.varclassVis={min:0,max:10,palette:['006400','ffbb22','ffff4c','f096ff','fa0000','b4b4b4','f0f0f0','0064c8','0096a0','00cf75','fae6a0']};Map.setCenter(-122.184,37.796,12);Map.addLayer(img,{bands:['B11','B8','B3'],min:100,max:3500},'img');Map.addLayer(lc,classVis,'lc');Map.addLayer(imgClassified,classVis,'Classified');Map.addLayer(roi,{color:'white'},'ROI',false,0.5);Map.addLayer(trainingSample,{color:'black'},'Training sample',false);Map.addLayer(validationSample,{color:'white'},'Validation sample',false);

Python setup

See the Python Environment page for information on the Python API and usinggeemap for interactive development.

importeeimportgeemap.coreasgeemap

Colab (Python)

# A Sentinel-2 surface reflectance image, reflectance bands selected,# serves as the source for training and prediction in this contrived example.img=ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG').select('B.*')# ESA WorldCover land cover map, used as label source in classifier training.lc=ee.Image('ESA/WorldCover/v100/2020')# Remap the land cover class values to a 0-based sequential series.class_values=[10,20,30,40,50,60,70,80,90,95,100]remap_values=ee.List.sequence(0,10)label='lc'lc=lc.remap(class_values,remap_values).rename(label).toByte()# Add land cover as a band of the reflectance image and sample 100 pixels at# 10 m scale from each land cover class within a region of interest.roi=ee.Geometry.Rectangle(-122.347,37.743,-122.024,37.838)sample=img.addBands(lc).stratifiedSample(numPoints=100,classBand=label,region=roi,scale=10,geometries=True)# Add a random value field to the sample and use it to approximately split 80%# of the features into a training set and 20% into a validation set.sample=sample.randomColumn()training_sample=sample.filter('random <= 0.8')validation_sample=sample.filter('random > 0.8')# Train an SVM classifier (C-SVM classification, voting decision procedure,# linear kernel) from the training sample.trained_classifier=ee.Classifier.libsvm().train(features=training_sample,classProperty=label,inputProperties=img.bandNames(),)# Get information about the trained classifier.display('Results of trained classifier',trained_classifier.explain())# Get a confusion matrix and overall accuracy for the training sample.train_accuracy=trained_classifier.confusionMatrix()display('Training error matrix',train_accuracy)display('Training overall accuracy',train_accuracy.accuracy())# Get a confusion matrix and overall accuracy for the validation sample.validation_sample=validation_sample.classify(trained_classifier)validation_accuracy=validation_sample.errorMatrix(label,'classification')display('Validation error matrix',validation_accuracy)display('Validation accuracy',validation_accuracy.accuracy())# Classify the reflectance image from the trained classifier.img_classified=img.classify(trained_classifier)# Add the layers to the map.class_vis={'min':0,'max':10,'palette':['006400','ffbb22','ffff4c','f096ff','fa0000','b4b4b4','f0f0f0','0064c8','0096a0','00cf75','fae6a0',],}m=geemap.Map()m.set_center(-122.184,37.796,12)m.add_layer(img,{'bands':['B11','B8','B3'],'min':100,'max':3500},'img')m.add_layer(lc,class_vis,'lc')m.add_layer(img_classified,class_vis,'Classified')m.add_layer(roi,{'color':'white'},'ROI',False,0.5)m.add_layer(training_sample,{'color':'black'},'Training sample',False)m.add_layer(validation_sample,{'color':'white'},'Validation sample',False)m

Except as otherwise noted, the content of this page is licensed under theCreative Commons Attribution 4.0 License, and code samples are licensed under theApache 2.0 License. For details, see theGoogle Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2024-07-13 UTC.