Announcement: All noncommercial projects registered to use Earth Engine beforeApril 15, 2025 mustverify noncommercial eligibility to maintain access. If you have not verified by September 26, 2025, your access may be on hold.

ee.Classifier.confusionMatrix

  • The confusion matrix computes a 2D matrix for a classifier based on its training data, where axis 0 represents input classes and axis 1 represents output classes.

  • Rows and columns of the matrix start at class 0 and increase sequentially, potentially resulting in empty rows or columns if input classes are not 0-based or sequential.

Computes a 2D confusion matrix for a classifier based on its training data (e.g., resubstitution error). Axis 0 of the matrix corresponds to the input classes and axis 1 corresponds to the output classes. The rows and columns start at class 0 and increase sequentially up to the maximum class value, so some rows or columns might be empty if the input classes aren't 0-based or sequential.

UsageReturns
Classifier.confusionMatrix()ConfusionMatrix
ArgumentTypeDetails
this:classifierClassifierThe classifier to use.

Examples

Code Editor (JavaScript)

// A Sentinel-2 surface reflectance image, reflectance bands selected,// serves as the source for training and prediction in this contrived example.varimg=ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG').select('B.*');// ESA WorldCover land cover map, used as label source in classifier training.varlc=ee.Image('ESA/WorldCover/v100/2020');// Remap the land cover class values to a 0-based sequential series.varclassValues=[10,20,30,40,50,60,70,80,90,95,100];varremapValues=ee.List.sequence(0,10);varlabel='lc';lc=lc.remap(classValues,remapValues).rename(label).toByte();// Add land cover as a band of the reflectance image and sample 100 pixels at// 10 m scale from each land cover class within a region of interest.varroi=ee.Geometry.Rectangle(-122.347,37.743,-122.024,37.838);varsample=img.addBands(lc).stratifiedSample({numPoints:100,classBand:label,region:roi,scale:10,geometries:true});// Add a random value field to the sample and use it to approximately split 80%// of the features into a training set and 20% into a validation set.sample=sample.randomColumn();vartrainingSample=sample.filter('random <= 0.8');varvalidationSample=sample.filter('random > 0.8');// Train a 10-tree random forest classifier from the training sample.vartrainedClassifier=ee.Classifier.smileRandomForest(10).train({features:trainingSample,classProperty:label,inputProperties:img.bandNames()});// Get information about the trained classifier.print('Results of trained classifier',trainedClassifier.explain());// Get a confusion matrix and overall accuracy for the training sample.vartrainAccuracy=trainedClassifier.confusionMatrix();print('Training error matrix',trainAccuracy);print('Training overall accuracy',trainAccuracy.accuracy());// Get a confusion matrix and overall accuracy for the validation sample.validationSample=validationSample.classify(trainedClassifier);varvalidationAccuracy=validationSample.errorMatrix(label,'classification');print('Validation error matrix',validationAccuracy);print('Validation accuracy',validationAccuracy.accuracy());// Classify the reflectance image from the trained classifier.varimgClassified=img.classify(trainedClassifier);// Add the layers to the map.varclassVis={min:0,max:10,palette:['006400','ffbb22','ffff4c','f096ff','fa0000','b4b4b4','f0f0f0','0064c8','0096a0','00cf75','fae6a0']};Map.setCenter(-122.184,37.796,12);Map.addLayer(img,{bands:['B11','B8','B3'],min:100,max:3500},'img');Map.addLayer(lc,classVis,'lc');Map.addLayer(imgClassified,classVis,'Classified');Map.addLayer(roi,{color:'white'},'ROI',false,0.5);Map.addLayer(trainingSample,{color:'black'},'Training sample',false);Map.addLayer(validationSample,{color:'white'},'Validation sample',false);

Python setup

See the Python Environment page for information on the Python API and usinggeemap for interactive development.

importeeimportgeemap.coreasgeemap

Colab (Python)

# A Sentinel-2 surface reflectance image, reflectance bands selected,# serves as the source for training and prediction in this contrived example.img=ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG').select('B.*')# ESA WorldCover land cover map, used as label source in classifier training.lc=ee.Image('ESA/WorldCover/v100/2020')# Remap the land cover class values to a 0-based sequential series.class_values=[10,20,30,40,50,60,70,80,90,95,100]remap_values=ee.List.sequence(0,10)label='lc'lc=lc.remap(class_values,remap_values).rename(label).toByte()# Add land cover as a band of the reflectance image and sample 100 pixels at# 10 m scale from each land cover class within a region of interest.roi=ee.Geometry.Rectangle(-122.347,37.743,-122.024,37.838)sample=img.addBands(lc).stratifiedSample(numPoints=100,classBand=label,region=roi,scale=10,geometries=True)# Add a random value field to the sample and use it to approximately split 80%# of the features into a training set and 20% into a validation set.sample=sample.randomColumn()training_sample=sample.filter('random <= 0.8')validation_sample=sample.filter('random > 0.8')# Train a 10-tree random forest classifier from the training sample.trained_classifier=ee.Classifier.smileRandomForest(10).train(features=training_sample,classProperty=label,inputProperties=img.bandNames(),)# Get information about the trained classifier.display('Results of trained classifier',trained_classifier.explain())# Get a confusion matrix and overall accuracy for the training sample.train_accuracy=trained_classifier.confusionMatrix()display('Training error matrix',train_accuracy)display('Training overall accuracy',train_accuracy.accuracy())# Get a confusion matrix and overall accuracy for the validation sample.validation_sample=validation_sample.classify(trained_classifier)validation_accuracy=validation_sample.errorMatrix(label,'classification')display('Validation error matrix',validation_accuracy)display('Validation accuracy',validation_accuracy.accuracy())# Classify the reflectance image from the trained classifier.img_classified=img.classify(trained_classifier)# Add the layers to the map.class_vis={'min':0,'max':10,'palette':['006400','ffbb22','ffff4c','f096ff','fa0000','b4b4b4','f0f0f0','0064c8','0096a0','00cf75','fae6a0',],}m=geemap.Map()m.set_center(-122.184,37.796,12)m.add_layer(img,{'bands':['B11','B8','B3'],'min':100,'max':3500},'img')m.add_layer(lc,class_vis,'lc')m.add_layer(img_classified,class_vis,'Classified')m.add_layer(roi,{'color':'white'},'ROI',False,0.5)m.add_layer(training_sample,{'color':'black'},'Training sample',False)m.add_layer(validation_sample,{'color':'white'},'Validation sample',False)m

Except as otherwise noted, the content of this page is licensed under theCreative Commons Attribution 4.0 License, and code samples are licensed under theApache 2.0 License. For details, see theGoogle Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2024-07-13 UTC.