Movatterモバイル変換


[0]ホーム

URL:


  1. Веб-технологии для разработчиков
  2. CSS: каскадные таблицы стилей
  3. Руководство по CSS
  4. Values
  5. <transform-function>
  6. rotate3d()

This page was translated from English by the community.Learn more and join the MDN Web Docs community.

View in EnglishAlways switch to English

rotate3d()

Baseline Widely available

This feature is well established and works across many devices and browser versions. It’s been available across browsers since июль 2015 г..

CSS-функцияrotate3d() трансформирует элемент без деформации, вращая его в трёхмерном пространстве вокруг зафиксированной оси. Её результат представлен типом данных<transform-function>.

Интерактивный пример

transform: rotate3d(0);
transform: rotate3d(1, 1, 1, 45deg);
transform: rotate3d(2, -1, -1, -0.2turn);
transform: rotate3d(0, 1, 0.5, 3.142rad);
<section>  <div>    <div>1</div>    <div>2</div>    <div>3</div>    <div>4</div>    <div>5</div>    <div>6</div>  </div></section>
#default-example {  background: linear-gradient(skyblue, khaki);  perspective: 550px;}#example-element {  width: 100px;  height: 100px;  transform-style: preserve-3d;}.face {  display: flex;  align-items: center;  justify-content: center;  width: 100%;  height: 100%;  position: absolute;  backface-visibility: inherit;  font-size: 60px;  color: white;}.front {  background: rgba(90, 90, 90, 0.7);  transform: translateZ(50px);}.back {  background: rgba(0, 210, 0, 0.7);  transform: rotateY(180deg) translateZ(50px);}.right {  background: rgba(210, 0, 0, 0.7);  transform: rotateY(90deg) translateZ(50px);}.left {  background: rgba(0, 0, 210, 0.7);  transform: rotateY(-90deg) translateZ(50px);}.top {  background: rgba(210, 210, 0, 0.7);  transform: rotateX(90deg) translateZ(50px);}.bottom {  background: rgba(210, 0, 210, 0.7);  transform: rotateX(-90deg) translateZ(50px);}

In 3D space, rotations have three degrees of liberty, which together describe a single axis of rotation. The axis of rotation is defined by an [x, y, z] vector and pass by the origin (as defined by thetransform-origin property). If, as specified, the vector is notnormalized (i.e., if the sum of the square of its three coordinates is not 1), theuser agent will normalize it internally. A non-normalizable vector, such as the null vector, [0, 0, 0], will cause the rotation to be ignored, but without invaliding the whole CSS property.

Примечание:Unlike rotations in the 2D plane, the composition of 3D rotations is usually not commutative. In other words, the order in which the rotations are applied impacts the result.

Syntax

The amount of rotation created byrotate3d() is specified by three<number>s and one<angle>. The<number>s represent the x-, y-, and z-coordinates of the vector denoting the axis of rotation. The<angle> represents the angle of rotation; if positive, the movement will be clockwise; if negative, it will be counter-clockwise.

rotate3d(x, y, z, a)

Values

x

Is a<number> describing the x-coordinate of the vector denoting the axis of rotation which could between 0 and 1.

y

Is a<number> describing the y-coordinate of the vector denoting the axis of rotation which could between 0 and 1.

z

Is a<number> describing the z-coordinate of the vector denoting the axis of rotation which could between 0 and 1.

a

Is an<angle> representing the angle of the rotation. A positive angle denotes a clockwise rotation, a negative angle a counter-clockwise one.

Cartesian coordinates onℝ^2 This transformation applies to the 3D space and can't be represented on the plane.
Homogeneous coordinates onℝℙ^2
Cartesian coordinates onℝ^3(1+(1cos(a))(x21)zsin(a)+xy(1cos(a))ysin(a)+xz(1cos(a))zsin(a)+xy(1cos(a))1+(1cos(a))(y21)xsin(a)+yz(1cos(a))ysin(a)+xz(1cos(a))xsin(a)+yz(1cos(a))1+(1cos(a))(z21))\begin{pmatrix}1 + (1 - \cos(a))(x^2 - 1) & z\cdot \sin(a) + xy(1 - \cos(a)) & -y\cdot \sin(a) + xz(1 - \cos(a))\\-z\cdot \sin(a) + xy(1 - \cos(a)) & 1 + (1 - \cos(a))(y^2 - 1) & x\cdot \sin(a) + yz(1 - \cos(a))\\y\cdot \sin(a) + xz(1 - \cos(a)) & -x\cdot \sin(a) + yz(1 - \cos(a)) & 1 + (1 - \cos(a))(z^2 - 1)\end{pmatrix}
Homogeneous coordinates onℝℙ^3
(1+(1cos(a))(x21)zsin(a)+xy(1cos(a))ysin(a)+xz(1cos(a))0zsin(a)+xy(1cos(a))1+(1cos(a))(y21)xsin(a)+yz(1cos(a))0ysin(a)+xz(1cos(a))xsin(a)+yz(1cos(a))1+(1cos(a))(z21)00001)\begin{pmatrix}1 + (1 - \cos(a))(x^2 - 1) & z\cdot \sin(a) + xy(1 - \cos(a)) & -y\cdot \sin(a) + xz(1 - \cos(a)) & 0\\-z\cdot \sin(a) + xy(1 - \cos(a)) & 1 + (1 - \cos(a))(y^2 - 1) & x\cdot \sin(a) + yz(1 - \cos(a)) & 0\\y\cdot \sin(a) + xz(1 - \cos(a)) & -x\cdot \sin(a) + yz(1 - \cos(a)) & 1 + (1 - \cos(a))(z^2 - 1) & 0\\0 & 0 & 0 & 1\end{pmatrix}

Examples

Rotating on the y-axis

HTML

html
<div>Normal</div><div>Rotated</div>

CSS

css
body {  perspective: 800px;}div {  width: 80px;  height: 80px;  background-color: skyblue;}.rotated {  transform: rotate3d(0, 1, 0, 60deg);  background-color: pink;}

Result

Rotating on a custom axis

HTML

html
<div>Normal</div><div>Rotated</div>

CSS

css
body {  perspective: 800px;}div {  width: 80px;  height: 80px;  background-color: skyblue;}.rotated {  transform: rotate3d(1, 2, -1, 192deg);  background-color: pink;}

Result

Совместимость с браузерами

Смотрите также

Help improve MDN

Learn how to contribute

This page was last modified on byMDN contributors.


[8]ページ先頭

©2009-2026 Movatter.jp