*Memos:
- My post explainsadd().
- My post explainssub().
- My post explainsdiv().
- My post explainsremainder().
- My post explainsfmod().
mul() can do multiplication with two of the 0D or more D tensors of zero or more elements or scalars or the 0D or more D tensor of zero or more elements and a scalar. getting the 0D or more D tensor of zero or more elements as shown below:
*Memos:
mul()
can be used withtorch or a tensor.- The 1st argument(
input
) withtorch
(Type:tensor
orscalar
ofint
,float
,complex
orbool
) or using a tensor(Type:tensor
ofint
,float
,complex
orbool
)(Required). - The 2nd argument with
torch
or the 1st argument with a tensor isother
(Required-Type:tensor
orscalar
ofint
,float
,complex
orbool
). - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
):*Memos:out=
must be used.- My post explains
out
argument.
- multiply() is the alias of
mul()
.
importtorchtensor1=torch.tensor([9,7,6])tensor2=torch.tensor([[4,-4,3],[-2,5,-5]])torch.mul(input=tensor1,other=tensor2)tensor1.mul(other=tensor2)# tensor([[36, -28, 18], [-18, 35, -30]])torch.mul(input=9,other=tensor2)# tensor([[36, -36, 27], [-18, 45, -45]])torch.mul(input=tensor1,other=4)# tensor([36, 28, 24])torch.mul(input=9,other=4)# tensor(36)tensor1=torch.tensor([9.,7.,6.])tensor2=torch.tensor([[4.,-4.,3.],[-2.,5.,-5.]])torch.mul(input=tensor1,other=tensor2)# tensor([[36., -28., 18.], [-18., 35., -30.]])torch.mul(input=9.,other=tensor2)# tensor([[36., -36., 27.], [-18., 45., -45.]])torch.mul(input=tensor1,other=4.)# tensor([36., 28., 24.])torch.mul(input=9.,other=4.)# tensor(36.)tensor1=torch.tensor([9.+0.j,7.+0.j,6.+0.j])tensor2=torch.tensor([[4.+0.j,-4.+0.j,3.+0.j],[-2.+0.j,5.+0.j,-5.+0.j]])torch.mul(input=tensor1,other=tensor2)# tensor([[36.+0.j, -28.+0.j, 18.+0.j],# [-18.+0.j, 35.+0.j, -30.+0.j]])torch.mul(input=9.+0.j,other=tensor2)# tensor([[36.+0.j, -36.+0.j, 27.+0.j],# [-18.+0.j, 45.+0.j, -45.+0.j]])torch.mul(input=tensor1,other=4.+0.j)# tensor([36.+0.j, 28.+0.j, 24.+0.j])torch.mul(input=9.+0.j,other=4.+0.j)# tensor(36.+0.j)tensor1=torch.tensor([True,False,True])tensor2=torch.tensor([[False,True,False],[True,False,True]])torch.mul(input=tensor1,other=tensor2)# tensor([[False, False, False],# [True, False, True]])torch.mul(input=True,other=tensor2)# tensor([[False, True, False], [True, False, True]])torch.mul(input=tensor1,other=False)# tensor([False, False, False])torch.mul(input=True,other=False)# tensor(False)
Top comments(0)
Subscribe
For further actions, you may consider blocking this person and/orreporting abuse