EineWärmekraftmaschine ist eineMaschine, dieWärme in mechanischeEnergie (Arbeit) umwandelt. Sie nutzt dabei das Bestreben der Wärme aus, von Gebieten mit höheren zu solchen mit niedrigeren Temperaturen zu fließen. Beispiele sindDampfmaschine,Dampfturbine und alleVerbrennungsmotoren.
Dagegen wird eine Maschine, die unter Einsatz mechanischer EnergieWärmeenergie von einem niedrigeren Temperaturniveau auf ein höheres transportiert, alsKraftwärmemaschine,Wärmepumpe oderKältemaschine bezeichnet.
AlsWirkungsgrad einer Wärmekraftmaschine wird der Anteil der vom oberen Temperaturniveau abfließenden Wärmeenergie bezeichnet, der in die genutzte mechanische Energie umgewandelt wird. Eine obere Grenze für ihn ist durch den Wirkungsgrad desCarnot-Prozesses gegeben, bei dem Wärmeaufnahme und -Abgabe bei definierten Temperaturniveaus und stattfinden und keine Reibungs-, Wärmeabfluss- und Wärmetransportverluste entstehen. Für ihn gilt:
Voraussetzung für die Erreichung des Carnotschen Wirkungsgrades ist, dass alle Teilprozesse des Kreisprozessesreversibel gestaltet sind. Dies ist gleichbedeutend damit, dass eine Größe namensEntropieS des Gesamtsystems aus Wärmekraftmaschine und Umgebung nicht wächst. (Nach demzweiten Hauptsatz der Thermodynamik kann sie nicht geringer werden, also muss sie konstant bleiben.)
(dQ ist die ausgetauschte Wärmemenge eines infinitesimal kleinen Prozessschritts,T die dazugehörige Temperatur):
Der Carnotsche Wirkungsgrad wird in der Praxis nie erreicht, da
die Wärmeaufnahme auch bei niedrigeren Temperaturen als und die Wärmeabgabe auch bei höheren Temperaturen als stattfindet (z. B. imStirling-Prozess),
trotz Isolation immer Wärmetransport ohne Austausch von Arbeit stattfindet,
jede Maschine Reibungsverluste aufweist, die ebenfalls das Verhältnis von Wärme- zu Arbeitsfluss verschlechtern, und schließlich
bei schnell ablaufenden Prozessen der Wärmestrom aufgrund des nichtverschwindenden Wärmewiderstands eine Temperaturdifferenz benötigt, die für die Umwandlung in Arbeit verloren geht (sieheWärmeleitung).
Eine wichtige Größe für denWirkungsgrad von Kolbenmaschinen bildet der Ausdehnungsgrad, manchmal auch Expansionswirkungsgrad genannt. Das ist der Volumenunterschied des verdichteten Gases zum expandierten Gas am Ende des Arbeitszyklus.
Bei denTurbinen ist das Druckverhältnis oder das Temperaturverhältnis des Arbeits- oder Brenngases beim Turbineneintritt zum Turbinenaustritt bestimmend für den Wirkungsgrad.
Ebenfalls wichtig ist ein möglichst hoherIsentropenexponent des Arbeitsgases. Das ist eine Verhältniszahl derWärmekapazität eines Gases bei gleichem Druck zu der bei gleichem Volumen. Freie Wahl des Arbeitsgases besteht nur bei Maschinen mit geschlossenem Kreislauf.
Verbrennungsmotoren haben Verbrennungstemperaturen von bis zu 2500 °C (2773 K) und Arbeitsgas-Endtemperaturen von etwa 1000 °C (1273 K). Der theoretisch maximal erreichbareWirkungsgrad wäre also
In der Praxis erreichen unter optimalen Bedingungen Ottomotoren 38 %, Dieselmotoren 45 % und langsam laufende Schiffsdieselmotoren 50 % Wirkungsgrad. In PKWs erreichen unter realen Fahrbedingungen mit einem hohen Anteil von Teillastbetrieb Ottomotoren typischerweise einen zeitlich gemittelten Wirkungsgrad von weniger als 25 % und Dieselmotoren weniger als 30 %.
Ausnutzung der Arbeitsfähigkeit eines Prozesses in der Temperaturspanne von 1500 bis 700 °C in der Gasturbine, danach mit denAbgasen aus dem Gasturbinenprozess
Ausnutzung der Arbeitsfähigkeit eines Prozesses in der Temperaturspanne von 700 bis 100 °C im Dampfkraftwerk,
wodurch theoretisch derWirkungsgrad eines (Vergleichs-)Kreisprozesses in der Temperaturspanne von 1500 bis 100 °C erreicht werden kann. GuD-Kraftwerke erreichen in der Praxis Wirkungsgrade bis zu 63 %.[1]
Kolbendampfmaschinen im geschlossenen Prozess arbeiten mit Dampftemperaturen bis 350 °C. Der Vergleichsprozess für dieseKraftmaschinen ist derGleichdruckprozess. DerWirkungsgrad übersteigt selten 20 %. Stirlingmotoren können im noch tieferen Temperaturbereich Wärme in Kraft umsetzen (z. B. Abwärme aus dem Dampfprozess). Der Wirkungsgrad erreicht dann gemäß derCarnot-Gleichung kaum mehr als 10 % bis 20 %.
Gasturbinen arbeiten mit Turbineneintrittstemperaturen von 1300 °C bis 1400 °C und Abgastemperaturen von 800 °C bis 600 °C. Der Vergleichsprozess ist derJouleprozess. Turbinen erreichen wegen der tieferen Höchsttemperaturen nicht denWirkungsgrad von Kolbenmaschinen.
Dampfturbinen arbeiten mit Höchsttemperaturen von 600 °C bis 700 °C und Endtemperaturen von 130 °C. Der Vergleichsprozess ist der Jouleprozess oder derClausius-Rankine-Prozess. Trotz der geringen Arbeitstemperatur des Dampfes kommt der Prozess wegen der gutenWärmekapazität und der gutenWärmeleitfähigkeit des Wasserdampfes im Erhitzer und im Kondensator aufWirkungsgrade von über 30 %.
Thermische Gasenergiemaschinen mit äußererVerbrennung In der Regel werden feste und billigeBrennstoffe zur Aufheizung des Arbeitsgases verwendet (Kohle,Holz, Müll). Auch minderwertige flüssige und gasförmige Brennstoffe (Rohöl,Schweröl,Industriegas undBiogas) werden oft angewandt. Ein typischer Anwendungsfall sind auch dieBrennstäbe vonKernkraftwerken. Als Arbeitsgas liefernHelium undWasserstoff einen wesentlich besserenWirkungsgrad alsDampf oder Luft oderAbgas, weil die drei wichtigen Eigenschaften für Arbeitsgase (Wärmekapazität, Isentropenexponent,Wärmeübergangszahl) besser sind.
Dampfturbine (maximale Dampftemperatur 800 K bis 1000 K)
Alfred Kischke:Die Gaskraftmaschinen. Kurzgefaßte Darstellung der wichtigsten Gasmaschinen-Bauarten. De Gruyter, 1909. (Nachdruck:ISBN 978-3-11-101818-8)
Gaskraftmaschine. In:Meyers Großes Konversations-Lexikon. Band 7, Leipzig 1907, S. 372–375.(online auf:zeno.org)