Stromerzeugung

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet vonStromproduktion)
Zur Navigation springenZur Suche springen
Braunkohlekraftwerk
Windkraft und Photovoltaik
Stromerzeugung in Deutschland seit 1900

AlsStromerzeugung bezeichnet man im weiteren Sinne jede Form der Bereitstellung nutzbarerelektrischer Energie aus nichtelektrischerEnergie durchEnergiewandlung. Sehr häufig bezieht man sich dabei im engeren Sinne primär auf die Erzeugung elektrischer Energie durchKraftwerke für die Einspeisung in öffentlicheStromnetze.

Die verbreitetste Technologie zur Stromerzeugung sindelektrische Generatoren, die durchWasserkraft,Windkraft oderthermische Energie angetrieben werden. Darüber hinaus spieltPhotovoltaik eine zunehmende Rolle.

Aufgrund der hohen Bedeutung elektrischer Energie für die Wirtschaft und die Bevölkerung sowie der Auswirkungen der Stromerzeugung auf die Umwelt ist die Stromerzeugung seit vielen Jahrzehnten ein bedeutendes Thema politischer und gesellschaftlicher Debatten.

Inhaltsverzeichnis

Allgemeines

[Bearbeiten |Quelltext bearbeiten]

Physikalische Perspektive

[Bearbeiten |Quelltext bearbeiten]

Die Wandlung andere Energieformen in elektrische Energie ist mit Verlusten verbunden. Das Verhältnis von eingebrachter Energie und elektrischer Nutzenergie wird alsWirkungsgrad des Kraftwerks bezeichnet.

Aus physikalischerPerspektive ist derelektrische Strom die pro Zeitspanne fließendeelektrische Ladung. Die Energie berechnet sich als Stromstärke multipliziert mit der elektrischen Spannung und der Zeitdauer.

DerStromzähler erfasst am Zählerpunkt die elektrischeStromstärke sowie die anliegendeWechselspannung, multipliziert derenAugenblickswerte vorzeichengerecht, um dieWirkleistung zu bestimmen, und ermittelt daraus durch zeitlicheIntegration die genutzteWirkenergie. Diese wird bisweilen auch Wirkverbrauch genannt. In der Energiewirtschaft spricht man vonStromverbrauch. Bei Phasenverschiebung von Leistung und Stromstärke entstehen Zeiträume, in denen die Vorzeichen von Stromstärke und Spannung unterschiedlich und die Leistung somit negativ ist. Man zerlegt die Leistung dann in Wirkleistung (immer positiv) undBlindleistung. Der Blindleistungsanteil oszilliert um Null und führt somit nicht zu einer Energieübertragung. In Verbrauchsanlagen enthaltene Kondensatoren und Spulen können Blindleistung erzeugen. Dies führt zu Netzverlusten. Daher wird Blindstrom bei Industriekunden gelegentlich dennoch mit geringen Preisen abgerechnet.

Die elektrische Energie wird zumeist über ein Stromnetz zu den angeschlossenen Geräten geleitet. Der Stromtransport ist mit Verlusten verbunden, die physikalisch einer Umwandlung von elektrischer Energie in Wärme entsprechen.

Geschichte

[Bearbeiten |Quelltext bearbeiten]
Hauptartikel:Geschichte der deutschen Elektrizitätswirtschaft

Der Siegeszug der elektrischen Energieversorgung begann nach 1882[1] durch die Konstruktion von Kraftwerken mitelektrischen Generatoren. Zunächst waren es voneinander unabhängige Insellösungen. Spätestens 1890 erkannte man jedoch die Vorteile vonwechselstrombetriebenenStromnetzen, weil diese nicht mehr so stark von der Betriebssicherheit einzelner Kraftwerke abhingen (sieheStromkrieg). In Deutschland bildeten sich zwei fast unabhängige Stromnetze:

  • Das öffentliche Netz mit 50 Hz und
  • dasBahnstromnetz mit1623 Hz für die Eisenbahn.

Einige Kraftwerke wurden mit getrennten Generatoren ausgestattet und konnten Strom für beide Systeme erzeugen.

In Deutschland wurde 1998 die Energieversorgung mit demEnergiewirtschaftsgesetz neu reguliert mit dem Ziel, Wettbewerb in Teile der Wertschöpfungskette zu tragen (sieheLiberalisierung der Energiewirtschaft). Seither ist der Wechsel des Stromlieferanten möglich und der Stromvertrieb ist mit über 1000 Stromlieferanten sehr kompetitiv. Bereits zuvor wurde auch die Förderung erneuerbarer Energien vorangetrieben, seit dem Jahr 2000 mit demErneuerbare-Energien-Gesetz. Der Anteil der Stromerzeugung mit Anspruch auf Erlöse nach dem Erneuerbare-Energien-Gesetz betrug 2019 42 % und stieg im Jahr 2020 auf 47 %.

Da die erneuerbare Erzeugung trotz ihres hohen Anteils an der Nettostromerzeugung im geltenden Marktdesign keinen Anreiz zu wettbewerblichem Verhalten hat, bleiben sie bei Untersuchungen des Kartellamts zu Marktkonzentration und Marktmacht unberücksichtigt. Wettbewerb entsteht in der derzeitigen Marktorganisation nur unter den konventionellen Erzeugern bei der Deckung derRestlast nach Abzug der Einspeisung erneuerbarer Energien (sieheMarktdesign der Energiewirtschaft).[2]

Energiewirtschaftliche Perspektive

[Bearbeiten |Quelltext bearbeiten]

UnterBruttostromerzeugung versteht man die insgesamt erzeugte elektrische Energie, z. B. eines Kraftwerkes oder eines Gebietes. Bei letzterem werden alle Stromerzeugungsquellen berücksichtigt (also z. B.Wind,Wasser, Sonne, Kohle, Öl).[3]

Zieht man von der Bruttostromerzeugung den Eigenbedarf der Kraftwerke ab, erhält man dieNettostromerzeugung. Beispielsweise liegt der Eigenbedarf vonKohlekraftwerken bei etwa 10 % und der vonKernkraftwerken um die 5 % der von ihnen selbst erzeugten elektrischen Energie, wobei der Eigenenergiebedarf von Kernkraftwerken auch nach der Beendigung der Stromerzeugung („Abschaltung“) für mehrere Jahre bestehen bleibt, da der Reaktor weiter gekühlt und abgesichert werden muss.

Die Summe aus Netto-Stromerzeugung und Stromimporten ergibt dasStromaufkommen. Abzüglich der Stromexporte und des Pumpstromverbrauchs fürPumpspeicherkraftwerke erhält man denBruttostromverbrauch. Werden hiervon schließlich noch die imStromnetz anfallendenÜbertragungsverluste (Leitungsverluste, Verluste imUmspannwerk etc.) abgezogen erhält man denNettostromverbrauch (Endenergieverbrauch).[4]

Technische Grundlagen

[Bearbeiten |Quelltext bearbeiten]

Die Erzeugung des Stroms findet inKraftwerken statt. Sehr oft wird in Kraftwerken zur Erzeugung der elektrischen Energie eine rotierendeelektrische Maschine eingesetzt, ein sog.elektrischer Generator (vgl.Fahrraddynamo). InWärmekraftwerken kommen meistensDrehstrom-Synchrongeneratoren zum Einsatz. Auch in Windkraftanlagen und Wasserkraftwerken finden Drehstrom-Synchrongeneratoren Anwendung. Dort werden aber ebenfallsDrehstrom-Asynchrongeneratoren eingesetzt.

Hauptvorteil der elektrischen Energie ist die Möglichkeit, einen ganzen Erdteil wie Europa mit einemVerbundnetz zu überziehen, in dem der elektrische Strom mit geringen Verlusten verteilt werden kann (s. a.elektrischer Energietransport) und sich durch die Vielzahl der verbundenen Kraftwerke die Redundanz und somit die Versorgungssicherheit erhöht.

Hauptnachteil des elektrischen Stromes ist die Tatsache, dass er sich nicht unmittelbarspeichern lässt. Nur durch verlustreiche Umwandlung in andere Energieformen, beispielsweise mittelsPumpspeicherkraftwerken, lässt sich vermeiden, dass die erzeugte elektrische Energiein jedem Augenblick exakt mit der verbrauchten Menge übereinstimmen muss. In einem System mit hohem Anteil an (fluktuierenden)erneuerbaren Energien sind deutlich mehrSpeicherkraftwerke erforderlich.

Die erzeugte elektrische Energie einesWasserkraftwerks, einerWindkraftanlage oder einesKernkraftwerks wird derzeit größtenteils direkt über die Übertragungsnetze in industrialisierte Gebiete transportiert und verbraucht. Je nach dem Verhältnis von Angebot und Nachfrage entstehen somit ein sehr unterschiedlicherStrompreis und gegebenenfalls auchnegative Strompreise. Zur Lösung dieser Probleme wird eineWasserstoffwirtschaft diskutiert, die bisher jedoch nur als Konzept vorliegt und nicht wirtschaftlich darstellbar ist.

Bedeutung

[Bearbeiten |Quelltext bearbeiten]
Energieverbrauch in Deutschland 2020 nach Energieträger

Elektrische Energie ist ein vielseitig verwendbarerEnergieträger, der sich mit besonders geringen Verlusten in andere Energieformenumwandeln lässt. Sie ist Voraussetzung für jede moderne Industrie und kann in der Regel nicht einfach durch andere Energieträger ersetzt werden.

EinStromausfall bringt jede Volkswirtschaft zum Erliegen und muss deshalb weitestgehend begrenzt bleiben. Eine hoheVersorgungssicherheit ist deshalb eine wichtige Bedingung für moderne Gesellschaften. Die durchschnittliche Unterbrechungsdauer der Elektroenergieversorgung je Stromverbraucher hat in Deutschland in den letzten Jahren abgenommen und lag im Jahr 2019 bei 12,2 Minuten.[5]

Im Jahr 2019 betrug der Endenergieverbrauch in Deutschland 9.050 Petajoule. Der Anteil des Stromverbrauchs war mit 1.806 Petajoule knapp 20 %. Dazu kamen 388 Petajoule Fernwärme, die in der Regel als Beiprodukt der Stromerzeugung entsteht. Die höchsten Anteile am Endenergieverbrauch haben Kraftstoffe für den Verkehr, Gas, das für Heizwärme und viele Industrieprozesse benötigt wird und an dritter Stelle Strom.[6]

Die konventionelle Erzeugung ohne Anspruch auf Erlöse nach dem Erneuerbare-Energien-Gesetz ist immer noch stark konzentriert. Im Jahr 2019 erzeugten die fünf größten Stromerzeuger RWE, E.ON, Vattenfall, LEAG und EnBW etwa 212 Terawattstunden Strom und hielten damit einem Anteil von 70,1 Prozent an der gesamten konventionellen Nettostromerzeugung in Deutschland.[7][8]

Arten der elektrischen Energieerzeugung

[Bearbeiten |Quelltext bearbeiten]
Siehe auch:Stromerzeugung in Deutschland

Erzeugungsanlagen unterscheiden sich in ihrer Verfügbarkeit, Flexibilität, den verbrauchtenBrennstoffen, ihrem CO2-Ausstoß und ihrer Kostenstruktur. Um die Nachfrage zu jedem Zeitpunkt wirtschaftlich und ökologisch optimal zu erzeugen, werden verschiedene Typen von Erzeugungsanlagen kombiniert. Dazu gehören auchPumpspeicher und gegebenenfalls andereSpeichertechnologien.

Fluktuierende und disponible Erzeugung

[Bearbeiten |Quelltext bearbeiten]
Hauptartikel:Grundlastfähigkeit undLastfolgebetrieb

Disponible Erzeugungsanlagen (englischdispatchable, deutsch auchgrundlastfähig) sind Elektroenergieerzeugungsanlagen, deren Einsatz in Abhängigkeit von Bedarf oder Strompreisen vorgegeben werden kann. Dies ist typischerweise für die konventionelle Erzeugung in Kohle-, Gas- und Kernkraftwerken der Fall, ebenso bei verschiedenen erneuerbaren Energien wie z. B. im Falle von Biomasse- und Geothermiekraftwerken. Dagegen ist die Energieproduktion sogenannter fluktuierender Erzeugung, wie etwa typisch vorkommend bei Windkraft- und Solaranlagen, dargebotsabhängig. Das heißt, die Quantität an erzeugter Elektroenergie richtet sich nach den jeweiligen Wind- und Sonneneinstrahlungsverhältnissen. Einige Erzeugungsarten nehmen hier eine Mittelstellung ein. Dazu gehören:

Grund-, Mittel- und Spitzenlastkraftwerke

[Bearbeiten |Quelltext bearbeiten]
Hauptartikel:Grundlast,Mittellast undSpitzenlast

Disponible Erzeugungsanlagen werden je nach ihrer Flexibilität in Grund-, Mittel- und Spitzenlastkraftwerke aufgeteilt. Hier geht es einerseits darum, um wie viel Prozent der Nennleistung das Kraftwerk seine Leistung reduzieren kann, ohne ganz abzufahren, wie schnell es nach dem Abfahren wieder hochfahren kann und wie schnell das Kraftwerk seine Leistung erhöhen oder senken kann und wie steil die Gradienten des abzufahrenden Fahrplans somit sein dürfen. Ob ein Kraftwerk in Grundlast oder Mittellast fährt, hängt nicht nur von technischen Grenzen, sondern auch von wirtschaftlichen Gegebenheiten ab. Das An- und Abfahren erzeugt Kosten, die umso eher eingebracht werden, je größer die Marktpreisunterschiede ausfallen.

Dezentrale elektrische Energieerzeugung

[Bearbeiten |Quelltext bearbeiten]

Eine Stromerzeugung in der Nähe des Verbrauchers, etwa innerhalb oder in der Nähe von Wohngebieten und Industrieanlagen, bezeichnet man alsdezentrale Stromerzeugung. Wird Strom über ein räumlich begrenztesStromnetz verteilt, das nicht mit dem Verbundnetz gekoppelt ist, spricht man von einemInselnetz. Einen Verbraucher, der unabhängig ist von Energieimporten, nennt manenergieautark.

Bei mobilen Geräten oder kleinen stationären Anlagen kommen typischerweiseBatterien oderAkkumulatoren alsEnergiespeicher zum Einsatz (s. a.Antriebsbatterie,Batteriespeicher). Mitte 2024 sind z. B. lautMarktstammdatenregister etwa 8 GWh bei Privatleuten installiert, was sich auch ausgleichend auf die Bezugsprofile der entsprechenden Haushalte/Wohngebiete auswirkt.

Unterscheidung nach Energieträgern

[Bearbeiten |Quelltext bearbeiten]
Hauptartikel:Strommix undEnergiemix

Beim Strommix wird untersucht, auf welchen Energieträgern die elektrische Energieerzeugung beruht. Der allgemeinere Energiemix dagegen reflektiert die Anteile der Energieträger amPrimärenergieverbrauch.

Stromerzeugung nach Energieträgern

[Bearbeiten |Quelltext bearbeiten]
Siehe auch:Energiewende

Weltweit

[Bearbeiten |Quelltext bearbeiten]
Entwicklung der weltweiten Stromerzeugung
Entwicklung der weltweiten Stromerzeugung bis 2023

Weltweit wurden im Jahr 2024 etwa 31153 TWh elektrischer Energie produziert.[9] Fast ein Drittel der Gesamtproduktion stammen aus erneuerbare Energien, mehr als ein Drittel aus Kohle.[9]

Im Jahr 2011 wurden global etwa 22.158 TWh elektrischer Energie produziert. Etwa zwei Drittel der Gesamtproduktion kamen aus der Verbrennungfossiler Energieträger, ca. 20 % wurdenregenerativ erzeugt und knapp 12 % mittelsKernenergie gewonnen.[10]

Anteile der weltweiten Bruttostromerzeugung
Energieträger201120122015202220232024
Kohle41,2 %40,3 %40,7 %35,9 %35,6 %34,5 %
Erdgas21,9 %22,4 %21,6 %22,4 %22,1 %21,8 %
Erdöl3,9 %4,1 %4,1 %2,7 %2,5 %2,4 %
Kernenergie11,7 %10,8 %10,6 %9,2 %9,2 %9,1 %
Wasserkraft15,6 %16,1 %16,2 %29,6  %30,4  %14 %
Übrige Erneuerbare4,2 %4,7 %6,0 %18,1 %
weltweit erzeugte elektrische Energie[9]
Energieträger202220232024
Gesamt291532989731153
Kohle104521064510736
Erdgas652666226793
Öl801762738
Kernenergie268427432844
Erneuerbare864390749992

Deutschland

[Bearbeiten |Quelltext bearbeiten]
Hauptartikel:Stromerzeugung in Deutschland#Bruttostromerzeugung nach Energieträgern

Wirtschaftliche Aspekte

[Bearbeiten |Quelltext bearbeiten]

Stromgestehungskosten

[Bearbeiten |Quelltext bearbeiten]
Hauptartikel:Stromgestehungskosten
Stromgestehungskosten für verschiedene Stromerzeugungsanlagen in Deutschland. Datenquelle: Fraunhofer ISE; Juli 2024[11]

Insbesondere bei erneuerbaren Energien werden zur Beurteilung von Wirtschaftlichkeit, Effizienz und Kostenregression auf Grund von technischem Fortschritt oft die sogenannten Stromgestehungskosten betrachtet. Dies sind im Wesentlichen die Vollkosten der Energieerzeugung, das heißt zu den variablen Kosten pro erzeugte kWh kommt die Umlage der Investition auf die produzierte Arbeit in kWh. Stromgestehungskosten Erneuerbarer Energien sind in den letzten Jahren stark gesunken.[12]

Für PV-Dachanlagen bestimmt sich die Wirtschaftlichkeit stärker über die Sparpotentiale, d. h. über die Differenz zwischen den Kosten einzukaufenden Stroms und dem erzielbaren Verkaufspreis. Lokale Speicher reduzieren zusätzlich die Bezugszeiten aus dem Netz.

Die Stromgestehungskosten hängen von demAmortisationszeitraum, also von der Lebensdauer der Anlage und von den sogenanntenVolllaststunden der Anlage ab. Diese Kennzahl für den Nutzungsgrad einer Anlage misst, wie viele Stunden die Anlage ihre Nennleistung produzieren müsste, um die im Jahr tatsächlich produzierte Arbeit zu erzeugen. Je mehr Volllaststunden und je länger die Laufzeit, auf desto mehr produzierte kWh kann die ursprüngliche Investition umgelegt werden und umso geringer sind die Stromgestehungskosten der Anlage.

Der Amortisationszeitraum für EEG-Anlagen ergibt sich aus der Förderdauer desErneuerbare-Energien-Gesetzes, Volllaststunden von Wind- und Solaranlagen ergeben sich aus dem Wind- und Sonneneinstrahlungsaufkommen.

Kapitalwert

Hauptartikel:Spark Spread undKapitalwert

Erneuerbare Erzeugung wird oftmals zum Fixpreis vergütet. In einem solchen Fall ist die Anlage wirtschaftlich und der Kapitalwert positiv, genau wenn der Fixpreis über den Stromgestehungskosten liegt.

Wird eine Anlage mit Strompreisen am Markt vergütet, sind offensichtlich nicht nur Kosten, sondern auch Erlöse zu betrachten. Bei gleichbleibenden Kosten ist die Anlage wirtschaftlicher, wenn der Strompreis höher ist. Sie ist wirtschaftlich, wenn der Kapitalwert positiv ist, d. h. diskontierte Mehrerlöse aus der Investition müssen die Investitionskosten decken.

Bei einem konventionellen Kraftwerk ist die Rohmarge durch den sogenanntenSpark Spread bestimmt, bei einem Braunkohlekraftwerk spricht man von Dark Spread. Dies ist die Preisdifferenz zwischen dem Strompreiserlösen für eine MWh Strom und den am Markt geltenden Brennstoffkosten für die Brennstoffe, die zur Erzeugung des Stroms nötig sind. Werden auch die für die Erzeugung benötigten Emissionszertifikate berücksichtigt, spricht man von Clean Spark Spread oder Clean Dark Spread. Produziert das Kraftwerk auch Wärme, müssen auch Erlöse aus dem Wärmeverkauf bei der Kapitalwertberechnung berücksichtigt werden.

Soweit seine Flexiblitäten das erlauben, fährt das Kraftwerk nur in Stunden, wo der Spark Spread positiv ist. Der Spark Spread bestimmt somit auch die Volllaststunden.

Andererseits bestimmen stark durch Brennstoffkosten bestimmte variable Kosten des Kraftwerksparks wiederum den Strompreis. Kraftwerke mit höherenGrenzkosten stehen in derMerit-Order weiter hinten und werden seltener eingesetzt. Ein Ausbau der erneuerbaren Energien führt über den Merit-Order-Effekt zu einer Verdrängung konventioneller Erzeugung, damit zu sinkenden Volllaststunden und somit zu steigenden Stromgestehungskosten konventioneller Anlagen.[13]

Stromgestehungskosten nach VGB PowerTech e. V. (2015)

Stromgestehungskosten konventioneller Anlagen sind somit von Marktpreisen der Brennstoffe und von Strompreisen abhängig, da der Spread zwischen Strompreis und Brennstoffpreisen in jeder Stunde bestimmt, ob das Kraftwerk fährt und welche Marge es dabei erzielt. Diese müssen über den gesamten Amortisationszeitraum mit ihrer stündlichen Struktur prognostiziert werden. Eine Studie des VGB PowerTech e. V. kam 2015 zu der nebenbei gezeigten Aufstellung.[14]

Die entsprechende Studie des Fraunhoferinstituts 2018 setzt bei Volllaststunden kleinere Korridore und kommt zu kleineren Bandbreiten beim Ergebnis. Die erneuerbaren Energien befinden sich dort im unteren Bereich des VGB-Korridors. Die angenommene Laufzeit der Kraftwerke unterscheidet sich in beiden Studien nicht.

Systemkosten

[Bearbeiten |Quelltext bearbeiten]

Für den Stromverbraucher und die Volkswirtschaft sind jedoch weder Stromgestehungskosten noch der Kapitalwert einer neu zu bauenden Anlage relevant. Vielmehr ist die Frage, zu welchen Kosten pro MWh die Stromversorgung insgesamt bei einer gegebenen nationalen Versorgungsstrategie dargestellt werden kann. Hierbei sind auch Netz- und Speicherkosten zu berücksichtigen. Auch diese finden sich ja in den Strompreisen des Endverbrauchers wieder.[15]

Um das Stromnetz stabil zu halten, muss der Stromverbrauch instantan in jeder Minute mit der Stromerzeugung übereinstimmen. Die fluktuierende Einspeisung von Wind- und Solaranlagen kann keinenLastfolgebetrieb darstellen.

Um Last und Erzeugung in Einklang zu bringen, wird derzeit die Residuallast nach Abzug der erneuerbaren Erzeugung durch konventionelle Kraftwerke gedeckt. Dies führt bei Ausbau erneuerbarer Energien zu sinkendenVollbenutzungsstunden aller Kraftwerke: Konventionelle Erzeugung kommt nur noch zum Einsatz, wenn die erneuerbare Erzeugung nicht ausreicht. Die durch konventionelle Erzeugung zu deckende Maximallast sinkt jedoch nur geringfügig (sieheResiduallast). Erneuerbare Erzeugung liefert nur, wenn Wind weht oder Sonne scheint, und hat somit ohnehin geringe Vollbenutzungsstunden. Zusätzlich sind bei starkem Ausbau Abschaltungen bei hohem Wind- und Solaraufkommen zu erwarten, weil die Einspeisung dann zu diesen Stunden die Last überschreitet.[16]

Weiterhin steigen bei steigender fluktuierender Erzeugung die Kosten fürSystemdienstleistungen. Im Jahr 2022 meldeten die Übertragungsnetzbetreiber sogenannteRedispatchmaßnahmen mit einem Gesamtvolumen von rund 22.000 Gigawattstunden. Im Jahr 2014 waren es noch 4.249 GWh.[17] Im selben Zeitraum stiegen die Kosten für diese Maßnahmen von 186,7 Millionen Euro[18] auf 2,69 Milliarden Euro.[19] Kosten für Redispatch-Maßnahmen werden über dieNetzentgelte umgelegt.

Der Ausbau erneuerbarer Energien macht den Ausbau der Verteilnetze und einen weiträumigen Stromaustausch über ganz Europa erforderlich. Dies ist mit hohen Investitionen verbunden, die dem Ausbau erneuerbarer Energien größtenteils direkt zuzurechnen sind. Der Bundesrechnungshof bezifferte die bis zum Jahr 2045 allein für den Ausbau der Stromnetze anfallenden Investitionskosten auf als 460 Mrd. Euro.[20]

Um den Anteil Erneuerbarer Energien weiter zu erhöhen, sind weiterhin Speicher erforderlich, derenWirkungsgradverluste undAmortisationskosten ebenfalls den Systemkosten zuzurechnen sind.

Stromgestehungskosten sind somit wie ein Gutachten der Universität Nürnberg bestätigt, kein guter Indikator für künftige Stromkosten.[21]

Stromhandel

[Bearbeiten |Quelltext bearbeiten]
Hauptartikel:Stromhandel,Energiemarkt undRegelleistung

Seit 1998 ist es in Europa möglich, elektrische Energie wie ein Wertpapier zu handeln. Über sogenannteBilanzkreise wird sichergestellt, dass jeder Versorger den Energiebedarf für den Folgetag für seinen Endkundenabsatz an den Handelsmärkten beschafft und jeder Kraftwerksbetreiber seine geplante Erzeugung für den Folgetag dort verkauft hat. Für Betreiber konventioneller Kraftwerke ist es jedoch sinnvoller, die aus Strompreis und Brennstoffkosten resultierende Marge bereits deutlich vorher am Terminmarkt abzusichern (sieheKraftwerkseinsatzoptimierung).

Kurzfristige Abweichungen in Erzeugung und Bedarf können noch bis kurz vor Lieferung auf den Intradaymärkten ausgeglichen werden. Erfolgt dies nicht, kommt es zu Frequenzabweichungen im Übertragungsnetz und derÜbertragungsnetzbetreiber sorgt für den Ausgleich zwischen Bedarf und Erzeugung durch Bereitstellung sogenannterRegelleistung. Regelleistung ist auf Abruf bereitstehende zusätzliche Erzeugung oder auch Last und wird in einer Auktion des Übertragungsnetzbetreibers ausgeschrieben. Die Teilnahme am Regelmarkt ist besonders für flexible Kraftwerke möglich und attraktiv.

Luftverschmutzung und Unfälle nach Energieträger

[Bearbeiten |Quelltext bearbeiten]

CO2- und Schadstoffemissionen

[Bearbeiten |Quelltext bearbeiten]
EnergiequelleCO2-Emission
Schwefeldioxid-Emission
Stickoxide-Emission
Kohlekraftwerk790–1230 in g/kWh[22]750 in mg/kWh800 in mg/kWh
Wasserkraftwerk4–13 in g/kWh[22]20 in mg/kWh40 in mg/kWh
Kernkraftwerk31 in g/kWh[22]30 in mg/kWh30 in mg/kWh
Erdgas GuD410–430 in g/kWh[22]80 in mg/kWh390 in mg/kWh
Windkraftanlage8–16 in g/kWh[22]50 in mg/kWh40 in mg/kWh
Photovoltaik27–59 in g/kWh[23]108 in mg/kWh[23]0,0716 in mg/kWh[23]
Holz HKW40 in g/kWh150 in mg/kWh1130 in mg/kWh

Todesfälle und Erkrankungen

[Bearbeiten |Quelltext bearbeiten]

Die elektrische Energieerzeugung ist eine bedeutende Quelle fürLuftverschmutzung. Nach einer 2015 inNature erschienenen Studie verursachte die Stromerzeugung im Jahr 2010 weltweit etwa 465.000 vorzeitige Todesfälle durch Luftverschmutzung. Am stärksten betroffen war China mit ca. 237.000 Todesfällen, in Deutschland starben ca. 4.400 Menschen infolge durch die Stromerzeugung hervorgerufenen Luftverschmutzung.[24]

Die unterschiedlichen Effekte von verschiedenen Formen der Stromerzeugung auf die Gesundheit sind schwer zuzuschreiben und unsicher zu erfassen. Die folgende Tabelle umschreibt eine Schätzung auf Basis von Daten aus derEuropäischen Union (Methode: ExternE). Die Gesundheitsschäden können durch Unfälle und durch Luftverschmutzung im Normalbetrieb auftreten. Laut Tabelle werden die meisten Erkrankungen durch Luftverschmutzung pro erzeugter Terawattstunde in der Europäischen Union durch Braun- und Steinkohle verursacht, gefolgt von Erdöl und Biomasse. Als wesentliche Probleme der Kernenergie sehen die Autoren hingegen nicht die Luftverschmutzung und den normalen Betrieb, welche vergleichsweise wenige Todesfälle verursachten, sondern langfristige Gefahren verbunden mit der Lagerung der nuklearen Abfälle und die Schäden im Falle eines Unfalls.

Todesfälle und Erkrankungen jeTerawattstunde nach Primärenergieträger in der Europäischen Union; veröffentlicht 2007[25]
Primär-
energie-
quelle
Todesfälle durch Unfälle
(Öffentlichkeit)
Todesfälle durch Unfälle
(Beschäftigte)
Todesfälle durch
Luftverschmutzung
Schwere Erkrankungen durch
Luftverschmutzung
Leichte Erkrankungen durch
Luftverschmutzung
Braunkohle0,0200,10032,600298,0017.676
Steinkohle0,0200,10024,500225,0013.288
Erdgas0,0200,0012,80030,00703
Erdöl0,03018,400161,009.551
Biomasse4,63043,002.276
Kernenergie0,0030,0190,0520,22

Siehe auch

[Bearbeiten |Quelltext bearbeiten]

Literatur

[Bearbeiten |Quelltext bearbeiten]
  • Jürgen D. Pinske:Elektrische Energieerzeugung. 2., vollst. überarb. und erw. Aufl., Teubner, Stuttgart 1993,ISBN 978-3-519-06170-0.
  • Klaus Heuck/Klaus-Dieter Dettmann/Detlef Schulz:Elektrische Energieversorgung: Erzeugung, Übertragung und Verteilung elektrischer Energie für Studium und Praxis, 9., Springer Vieweg 2013,ISBN 978-3-8348-1699-3.
  • Adolf J. Schwab:Elektroenergiesysteme: Erzeugung, Übertragung und Verteilung elektrischer Energie. 5. Aufl., Springer Vieweg, Berlin 2017,ISBN 978-3-662-55315-2.
  • Volker Quaschning:Regenerative Energiesysteme. 9., Hanser 2015,ISBN 978-3-446-44267-2.
  • Valentin Crastan:Elektrische Energieversorgung. Teil 2:Energiewirtschaft und Klimaschutz, Elektrizitätswirtschaft und Liberalisierung, Kraftwerktechnik und alternative Stromversorgung, chemische Energiespeicherung. 4. Aufl., Springer Vieweg, Wiesbaden 2017,ISBN 978-3-662-48964-2.
  • Panos Konstantin:Praxisbuch Energiewirtschaft. Energieumwandlung, -transport und -beschaffung im liberalisierten Markt. Springer, 2007,ISBN 978-3-540-35377-5. 

Weblinks

[Bearbeiten |Quelltext bearbeiten]
Commons: Stromerzeugung – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Stromerzeugung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

[Bearbeiten |Quelltext bearbeiten]
  1. Martin Roscheisen:Die Geschichte der Energieversorgung in Deutschland- (Memento vom 18. Februar 2010 imInternet Archive) In:rmartinr.com, abgerufen am 22. März 2012.
  2. Sektorgutachten Energie. Abgerufen am 5. September 2021. 
  3. Die Bundesregierung: Glossar zu Energie. Abgerufen am 20. Oktober 2020. 
  4. Wiley: Netto-Stromverbrauch, Wiley ChemgaPedia. Abgerufen am 3. November 2018. 
  5. Unterbrechungsdauer der Stromversorgung. Abgerufen am 5. September 2021. 
  6. Endenergieverbrauch nach Energieträgern. Abgerufen am 5. September 2021. 
  7. Stromerzeugung in Deutschland. Abgerufen am 5. September 2021. 
  8. Monitoringbericht 2020. Abgerufen am 5. September 2021. 
  9. abcAlex Martinos, Thomas Spencer, Víctor García Tapia, Arthur Roge, Davide D’Ambrosio, Laura Cozzi: Global Energy Review 2025 – Electricity. In: International Energy Agency www.iea.org > Reports > Global Energy Review 2025. International Energy Agency IEA, Paris, 24. März 2025, S. 28, abgerufen am 24. März 2025 (britisches Englisch). 
  10. World Development Indicators: Electricity production, sources, and access.Weltbank, abgerufen am 22. Dezember 2013, neue Zahlen für 2015 am 4. Oktober 2018.
  11. Christoph Kost, Shivenes Shammugam, Verena Fluri, Dominik Peper, Aschkan Davoodi Memar, Thomas Schlegl:Stromgestehungskosten Erneuerbare Energien. Fraunhofer-Institut für solare Energiesysteme ISE, Freiburg Juni 2021 (fraunhofer.de [PDF]). 
  12. Studie zu Stromgestehungskosten: Photovoltaik und Onshore-Wind sind günstigste Technologien in Deutschland. Abgerufen am 6. September 2021. 
  13. Zur Wirtschaftlichkeit von Kohlekraftwerken am Beispiel des geplanten Kohlekraftwerks in Mainz. Abgerufen am 4. September 2021. 
  14. Levelised Cost of Electricity. Abgerufen am 6. September 2021 (englisch). 
  15. Diese Rechnung offenbart den Denkfehler vom billigen Öko-Strom. Abgerufen am 10. April 2024. 
  16. Grenzkosten, Gestehungskosten, Systemkosten – Die wahren Kosten der Stromerzeugung. Abgerufen am 7. April 2024. 
  17. Entwicklung des Gesamtvolumens der Redispatchmaßnahmen im deutschen Übertragungsnetz in den Jahren 2014 bis 2022 (in Gigawattstunden). Abgerufen am 24. Februar 2024. 
  18. Monitoringbericht 2015. Abgerufen am 24. Februar 2024. 
  19. Steigende Kosten durch Redispatch | Newsblog der EWS - atomstromlos. klimafreundlich. bürgereigen. In: ews-schoenau.de. 27. Oktober 2023, abgerufen am 25. März 2024. 
  20. Energiewende nicht auf Kurs: Deutschland hinkt seinen ambitionierten Zielen hinterher. Abgerufen am 7. April 2024. 
  21. Stromgestehungskosten von Erneuerbaren sind kein guter Indikator für zukünftige Stromkosten. Abgerufen am 11. April 2024. 
  22. abcdeDeutscher Bundestag, 2007:CO2-Bilanzen verschiedener Energieträger im Vergleich S. 21. (PDF; 747 kB), aufgerufen am 29. Mai 2016.
  23. abcWiley InterScience, 30. Januar 2006:Photovoltaics Energy Payback Times, Greenhouse Gas Emissions and External Costs: 2004–early 2005 Status, aufgerufen am 22. März 2012.
  24. Johannes Lelieveld et al.:The contribution of outdoor air pollution sources to premature mortality on a global scale. In:Nature.Band 525, 2015,S. 367–371,doi:10.1038/nature15371. 
  25. Anil Markandya, Paul Wilkinson:Electricity generation and health. In:The Lancet.Band 370, 2007,S. 979–990,doi:10.1016/S0140-6736(07)61253-7. ,Link (Memento vom 23. Januar 2014 imInternet Archive)
Normdaten (Sachbegriff):GND:4133665-3(lobid,OGND,AKS)
Abgerufen von „https://de.wikipedia.org/w/index.php?title=Stromerzeugung&oldid=254542337
Kategorien: