Formale Grammatik
Formale Grammatiken sindmathematische Modelle vonGrammatiken, die zur eindeutigen Erzeugung und Beschreibungformaler Sprachen dienen. Sie werden in dertheoretischen Informatik, insbesondere in derBerechenbarkeitstheorie, und imCompilerbau zum einen angewendet, um eindeutig festzulegen, ob einWort Element einer Sprache ist und zum anderen, um Eigenschaften dieser formalen Sprachen zu untersuchen bzw. zu beweisen. Formale Grammatiken werden mithilfe vonSemi-Thue-Systemen angegeben in derChomsky-Hierarchie klassifiziert.
Beschreibung
[Bearbeiten |Quelltext bearbeiten]Mit einer formalen Grammatik lassen sich ausgehend von einem Startsymbol (auchStartvariable genannt)Produktionsregeln aus einer Regelmenge anwenden, die aus dem Startsymbol neue Zeichenfolgen (Wörter) erzeugen, welche wiederum weiter ersetzt werden können. Diesen Vorgang nennt man auchAbleitung.
Das Vokabular einer Grammatik, bestehend aus derdisjunkten Vereinigung einesAlphabets vonTerminalsymbolen mit einer Menge vonNichtterminalsymbolen, gibt dabei vor, welche Symbole dafür verwendet werden können. Die Menge der Terminalsymbole definiert, aus welchen Zeichen Wörter bestehen, die nicht weiter abgeleitet werden können. Diese Wörter ergeben zusammengenommen die von der Grammatik beschriebene formale Sprache. Das Startsymbol muss dagegen ein Nichtterminalsymbol sein. Zusätzliche Nichtterminalsymbole erlauben differenziertere Regeln.
Produktionsregeln sind definitionsgemäßgeordnete Paare, die auch geschrieben werden. Man wendet sie auf eine Zeichenfolge an, indem ein Vorkommen der Zeichenfolge in durch ersetzt wird. Auf der linken Seite der Regel muss immer mindestens ein Nichtterminalsymbol stehen. Eine Menge von Regeln mit gleicher linker Seite, also, wird abkürzend auch als geschrieben.
Zum Beispiel kann man mit der Regelmenge die Zeichenfolge entweder zu oder zu ableiten.
Ebenso wie auf eine gegebene Zeichenfolge mehrere Regeln gleichzeitig anwendbar sein können, muss es nicht immer nur eine Stelle in der Zeichenfolge geben, auf die eine Regel passt. Formale Grammatiken schreiben keine Reihenfolge vor. Alle nur aus Terminalsymbolen bestehenden Wörter, die sich aus dem Startsymbol ableiten lassen, zählen zur von der Grammatik beschriebenen Sprache.
Definition
[Bearbeiten |Quelltext bearbeiten]Eine formale Grammatik wird dargestellt durch das 4-Tupel, worin:[1]
- , einer endlichen Menge vonSymbolen, welche alsSymbolmenge oderVokabular bezeichnet wird,
- , einer Teilmenge von, auchAlphabet genannt und deren ElementeTerminalsymbole heißen,
- , einer endlichen Menge vonProduktionsregeln, sowie
- , demStartsymbol.
Das 4-Tupel wird je nach Konvention auch so definiert, dass der Menge derNichtterminalsymbole entspricht, sodass ist.[2]
Hierbei bezeichnet dieKleenesche Hülle einer Menge von Zeichen (oder auch Wörtern).
Die Menge ist die Menge vonNichtterminalsymbolen (auchNonterminale oderMetasymbole genannt), insbesondere gehört das Startzeichen zu ihr. Das Wort auf der linken Seite der Regelpaare darf nicht ausschließlich aus Terminalzeichen bestehen, was man auch durch eineKonkatenation ausdrücken kann:
- .
Es ergibt wenig Sinn, wenn das Wort auf der rechten Seite das Startsymbol enthält. Manche Autoren berücksichtigen das, indem sie die zugehörige Menge entsprechend beschränken, d. h. durch ersetzen.
Manche Autoren bezeichnen alternativ das Quadrupel als Grammatik. Es finden sich darüber hinaus folgende abweichenden Bezeichnungen:[3]
- für dieTerminalzeichen, hier,
- für das gesamteVokabular (Symbolmenge) allerSymbole, hier,
- für die Nichtterminalzeichen (Variablen), hier,[4]
- für das leere Wort, hier.[4]
Die von einer Grammatik beschriebene Sprache
[Bearbeiten |Quelltext bearbeiten]Eine Regel einer gegebenen Grammatik besagt, dass in einem Wort mit R alsInfix, R durch Q ersetzt werden kann, so dass ein neues Wort mit als Infix entsteht. Man spricht hierbei auch davon, dass in mit der Grammatik bzw. durch die Regel übergeht, oder auch, dass aus abgeleitet wurde. Dies kann durch notiert werden (häufig auch anstatt). Soll nur ausgedrückt werden, dass in der Grammatik das Wort aus entstehen kann, ohne eine Regel zu benennen, schreibt man stattdessen (ist die Grammatik aus dem Kontext offensichtlich, auch einfach). Demnach ist ein solcher Übergang von in eineTransitionsrelation, die eine natürliche Erweiterung von auf alle möglichen-Kontexte darstellt, nämlich:
- ,
wobei hier dieKonkatenation von Wörtern bezeichnet.
Gibt es nun eine Folge von Wörtern, bei der gilt, dass für jede natürliche Zahl mit das Wort in übergeht (), so ist in Schritten aus ableitbar, was durch dargestellt wird. Eine solche Wortfolge wirdAbleitung oderRechnung von in der Länge genannt. Weiterhin heißt in ableitbar, wenn es mindestens ein gibt, so dass in Schritten aus ableitbar ist. Wenn in ableitbar ist, so wird dies durch die Schreibweise dargestellt. Dabei wird zusätzlich definiert, dass für jedes Wort gilt, dass ist, so dass die Relation diereflexiv-transitive Hülle der Relation ist.
Nun ist die von der Grammatik erzeugte formale Sprache diejenige Sprache, die aus allen Wörtern besteht, die zum einen nur aus Terminalsymbolen bestehen und die zum anderen vom Startsymbol mit einer endlichen Anzahl von Schritten abgeleitet werden können:
Dabei ist es egal, in welcher Reihenfolge die Produktionsregeln auf die abgeleiteten Wörter angewandt werden, oder ob es mehrere Möglichkeiten gibt, um ein Wort aus abzuleiten. Zwei Grammatiken und sind genau dannäquivalent, wenn die durch und erzeugten Sprachen gleich sind:
Wenn alle Terminalzeichen in den Wörtern der formalen Sprachen vorkommen, dann müssen die Terminalzeichen übereinstimmen. Die Nichtterminalzeichen sind dagegen völlig frei.
Beispiele
[Bearbeiten |Quelltext bearbeiten]sei eine Grammatik mit den Terminalsymbolen, den Nichtterminalsymbolen, dem Startsymbol und mit den Regeln
Dabei ist dasleere Wort, welches ein Wort der Länge 0 ist. Diese Grammatik definiert die Sprache aller Wörter der Form mit. So sind auf Grund der folgenden Ableitungen die Wörter, und Elemente der durch beschriebenen Sprache:
- , mittels Regel (2),
- , mittels der Regeln (1), (4) und (6),
- , mittels der Regeln (1),(1),(4),(3), (5), (6) und (7).
Es gibt aber noch andere Möglichkeiten, um das Wort aus abzuleiten.
Eine weitere Grammatik, die dieselbe Sprache beschreibt, ist diekontextfreie Grammatik mit den Regeln:
Jederekursiv aufzählbare Sprache wird von mehreren (und zwarabzählbar unendlich vielen) Grammatiken erzeugt.Allerdings gibt es auch Sprachen, die sich von keiner Grammatik erzeugen lassen.
Klassen von Grammatiken
[Bearbeiten |Quelltext bearbeiten]Grammatiken werden Klassen zugeordnet, die sich durch Gemeinsamkeiten auszeichnen. Die bekannteste Klassifikation beschriebenNoam Chomsky undMarcel Schützenberger mit derChomsky-Hierarchie.
Chomsky-Hierarchie
[Bearbeiten |Quelltext bearbeiten]DieChomsky-Hierarchie teilt die Grammatiken nach der Art der Produktionsregeln in Klassen vom Typ 0 bis Typ 3 ein:
- Typ-0-Grammatiken:Phrasenstrukturgrammatiken sind uneingeschränkte formale Grammatiken.
- Typ-1-Grammatiken:Kontextsensitive Grammatiken dürfen nur aus Regeln bestehen, in denen genau ein Nichtterminalsymbol durch eine Zeichenfolge ersetzt wird. Dieses Symbol darf auf der linken Seite der Regel auch von weiteren Symbolen umgeben sein, die einen Kontext angeben, innerhalb dessen die Ersetzung stattfinden muss.
- Typ-2-Grammatiken: Inkontextfreien Grammatiken darf dagegen auf den linken Seiten der Regeln jeweils nur genau ein Nichtterminalsymbol stehen. Das Symbol kann dann unabhängig vom Kontext ersetzt werden.
- Typ-3-Grammatiken: Beiregulären Grammatiken enthalten die linken Seiten der Regeln ebenfalls nur genau ein Nichtterminalsymbol. Bei linksregulären Grammatiken darf die rechte Seite der Regel aus höchstens einem Nichtterminalsymbol bestehen, dem höchstens ein Terminalsymbol folgt (Bsp.:). Bei rechtsregulären Grammatiken darf hingegen die rechte Seite aus höchstens einem Terminalsymbol bestehen, dem höchstens ein Nichtterminal folgt (Bsp.:).
Die zugehörigen Sprachklassen sind abnehmend umfangreich. Es besteht folgende echteInklusionsbeziehung:
Für die Sprachklassen von Typ mit gilt:.
Weitere Sprachklassen
[Bearbeiten |Quelltext bearbeiten]Von der Chomsky-Hierarchie abgesehen haben sich weitere Klassen an Grammatiken etabliert:
- Monotone Grammatiken beschreiben die gleiche Sprachklasse wie die kontextsensitiven Grammatiken. Etwas strenger sind diewachsend kontextsensitiven Grammatiken, die eine Teilklasse der kontextsensitiven Sprachklasse beschreiben.
- Deterministisch kontextfreie Grammatiken beschreiben diedeterministisch kontextfreien Sprachen. Sie werden auch durch dieLR(k)-Grammatiken beschrieben, welche für den Compilerbau von Bedeutung sind. Andere im Compilerbau bekannte Grammatiken sindLL(k)-Grammatiken undLF(k)-Grammatiken.
Siehe auch
[Bearbeiten |Quelltext bearbeiten]- Graphgrammatik
- Backus-Naur-Form undErweiterte Backus-Naur-Form
- Syntaxtheorie zu (formalen) Grammatiken in derLinguistik
- Kommunizierendes Grammatik-System
Literatur
[Bearbeiten |Quelltext bearbeiten]- Katrin Erk, Lutz Priese:Theoretische Informatik. Eine umfassende Einführung. 2. erweiterte Auflage. Springer-Verlag, Berlin u. a. 2002,ISBN 3-540-42624-8,S. 53–61.
Weblinks
[Bearbeiten |Quelltext bearbeiten]Einzelnachweise
[Bearbeiten |Quelltext bearbeiten]- ↑Peter Bachmann:Grundlagen der Theoretischen Informatik. Cottbus 2001,S. 47 (tu-cottbus.de [PDF; abgerufen am 12. Februar 2011] Vorlesungsskript).
- ↑Christian Wagenknecht, Michael Hielscher:Formale Sprachen, Abstrakte Automaten und Compiler. Springer Vieweg, Wiesbaden 2014,S. 28,doi:10.1007/978-3-658-02692-9.
- ↑Während die Bedeutung von und bzw. im gegebenen Fall jeweils klar ist, muss man sich bei (ebenso wie dem häufig benutzten) durch Überprüfung des Kontexts klarmachen, was gemeint ist; wobei man sich auf das Grammatik-Quadrupelsnicht verlassen kann.
- ↑abKlaus Reinhardt:Prioritatszahlerautomaten und die Synchronisation von Halbspursprachen (Memento desOriginals vom 17. Januar 2018 imInternet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäßAnleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/users.informatik.uni-halle.de, Fakultät Informatik der Universität Stuttgart; Doktorarbeit 1994. Das Grammatik-Quadrupel ist hier wörtlich mit angegeben, damit ist in der hier gewählten Bezeichnungsweise gemeint.