Silicate

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet vonSilikat)
Zur Navigation springenZur Suche springen
Häufige natürliche Erscheinungsform der Silikate: Feldspat
Feinpulvriges Silicat fürSäulenchromatographie

Silicate (standardsprachlichSilikate)[1][2] sind dieSalze undEster derOrtho-Kieselsäure (Si(OH)4) und derenKondensate. Die Ester werden unterKieselsäureester beschrieben, für die Kondensate sieheKieselsäuren. Alle Salze sind durch SiO4Tetraeder aufgebaute Verbindungen, deren Tetraeder jedoch auf verschiedene Weise miteinander verknüpft sein können. Unverknüpfte Stellen der Tetraeder tragen zum LadungsausgleichMetallkationen bei oder liegen eventuell alsHydroxidionen (OH) vor. Mit Ausnahme derAlkalisilicate sind Silicate unlöslich in Wasser oder anderenLösungsmitteln, außerFlusssäure.

Natürliche Silicate (Silicatminerale) spielen eine große Rolle in derMineralogie, da sich sehr viele Minerale dieser Stoffgruppe zuordnen lassen. DieErdkruste besteht mit einemMassenanteil von über 90 % aus Silicaten und derErdmantel fast vollständig. Die häufigsten Silicate in der Erdkruste sind mit einem Volumenanteil von 50–60 % dieFeldspäte. Andere wichtige gesteinsbildende Minerale sindGlimmer,Tonminerale,Amphibole,Pyroxene,Granat undOlivin. Das häufige MineralQuarz (SiO2) wird in deutschsprachiger Literatur zu denOxiden gezählt, im anglo-amerikanischen Schrifttum jedoch zu den Silicaten.

Inhaltsverzeichnis

Struktur

[Bearbeiten |Quelltext bearbeiten]
Tetraedrisches Silicatanion
Kondensierter Doppeltetraeder

Allen Silicatmineralen ist ein gemeinsames Bauprinzip eigen, deshalb lassen sie sich relativ einfach in eine systematische Ordnung bringen. Die Grundbausteine aller Silicate sind SiO4-Tetraeder. EinSiliciumatom ist dabei von vier Sauerstoffatomen umgeben. Die Sauerstoffatome berühren sich wegen ihrer Größe, in der Mitte bleibt Platz für das relativ kleine Siliciumatom (der freie Raum heißtTetraederlücke).

Eine weitere Eigenschaft der Silicate besteht in der Fähigkeit der Sauerstoffatome, gleichzeitig an verschiedenen SiO4-Komplexen teilzuhaben. Daraus ergeben sich neben isolierten SiO4-Tetraedern weitere, zusammengesetzte Bauelemente:

  • isolierte Tetraeder
  • Doppeltetraeder
  • Ringstrukturen
  • Einfach- und Doppelketten
  • Schichtstrukturen
  • Gerüststrukturen.

Aluminium kann das sich chemisch ähnlich verhaltende Silicium ersetzen und substituieren (man spricht hier von „isomorphem Ersatz“), Silicate, in denen dies passiert, nennt manAlumosilicate. Bei Einbau von Aluminium (Al3+ statt Si4+) in das Mineralgitter muss Ladungsausgleich durch Einbau weiterer positiv geladener Ionen (Kationen) erfolgen.

Systematik der Silicatminerale

[Bearbeiten |Quelltext bearbeiten]

Die Silicate bilden wie bereits erwähnt eine äußerst ausgedehnte Mineralfamilie. Es treten große Unterschiede hinsichtlich chemischer Zusammensetzung,Kristallsymmetrie,Bindungsarten und Struktur der Grundbausteine auf, weshalb verschiedene Klassifikationsschemata für Silicatminerale bestehen. Die in Deutschland übliche Systematik teilt sie nach dem Grad derPolymerisation der SiO4-Tetraeder ein.

Bemerkungen zur Schreibweise der chemischen Summenformeln

[Bearbeiten |Quelltext bearbeiten]

Eine vereinfachte schematische Formel von Silicaten ist:

Mn[(SixOy)4x2y]{\displaystyle \mathrm {M_{n}\left[\left(Si_{x}O_{y}\right)^{4x-2y}\right]} }.

An die Stelle derSauerstoff-Siliciumkomplexe könnenHydroxid- oderFluoridionen treten. Die Position von „M“ wird von einem oder mehreren Metallionen bis zum Ladungsausgleich besetzt. In das Gitter von besonders weitmaschigen Silicaten kann auchWasser eingelagert werden. Wenn in einem bestimmten Mineral tatsächlich einige der SixOy-Komplexe durch Ionen wie Fluorid (F) oder Hydroxid (OH) ersetzt werden, so deutet man das durch senkrechte Trennstriche (oft auch Schrägstriche) im letzten Term der Formel an, zum Beispiel

Al2[Si2O5|(OH)4]{\displaystyle \mathrm {Al_{2}\left[Si_{2}O_{5}|(OH)_{4}\right]} },Kaolinit.

Eingelagertes Wasser wird folgendermaßen notiert:

Na[AlSi2O6]H2O{\displaystyle \mathrm {Na[AlSi_{2}O_{6}]\cdot H_{2}O} },Analcim.

Klassifizierung nach dem Polymerisationsgrad der SiO4-Tetraeder

[Bearbeiten |Quelltext bearbeiten]

Inselsilicate (Nesosilicate)

[Bearbeiten |Quelltext bearbeiten]
Hauptartikel:Inselsilikate
Inselsilicat

Bei denInselsilicaten liegen isolierte SiO4-Tetraeder vor. Vertreter:

Gruppensilicate (Sorosilicate)

[Bearbeiten |Quelltext bearbeiten]
Hauptartikel:Gruppensilikate
Gruppensilicat

Je zwei SiO4-Komplexe sind über ein Sauerstoffatom zu Doppeltetraedern verbunden, wobei dieser so genannte Brückensauerstoff jedem SiO4-Tetraeder zur Hälfte angehört. Das Si:O-Verhältnis inGruppensilikaten ist damit 2:7. Diese Struktur kommt weniger häufig vor, ein Beispiel ist das MineralGehlenit (Ca2Al[(Si,Al)2O7]).

Ringsilicate (Cyclosilicate)

[Bearbeiten |Quelltext bearbeiten]
Hauptartikel:Ringsilikate

InRingsilicaten sind die SiO4-Tetraeder zu isolierten Dreier-, Vierer- und Sechserringen gruppiert. Jedes Siliciumion teilt sich je zwei Sauerstoffionen mit zwei benachbarten Tetraedern, dies ergibt ein Si:O-Verhältnis inRingsilicaten von 1:3. Es ergeben sich die folgenden Formeln für die Ringstrukturen:

  • [Si3O9]6−
  • [Si4O12]8−
  • [Si6O18]12−.

Beryll (Al2Be3[Si6O18]) und die Minerale derTurmalingruppe gehören zu den Ringsilicaten.

Ketten- und Bandsilicate (Inosilicate)

[Bearbeiten |Quelltext bearbeiten]
Hauptartikel:Kettensilicate
Kettensilicat
Bandsilicat

Zu denKettensilicaten gehören zwei wichtige Gruppen vongesteinsbildenden Mineralen:Pyroxene undAmphibole. Die Pyroxene bilden eindimensionale Einfachketten, dabei gehören je zwei der Sauerstoffionen gleichzeitig zwei Tetraederkomplexen an, woraus sich ein Si:O-Verhältnis von 1:3 ergibt, wie beiDiopsid (CaMg[Si2O6]).

Amphibole bilden eindimensionale Bänder. Dabei sind zwei Ketten seitlich über Brückensauerstoffe verbunden. Gegenüber den Ketten hat zusätzlich jeder zweite Tetraeder jeder Kette mit seinem jeweiligen Nachbarn ein Sauerstoffion gemeinsam. Das Si:O-Verhältnis bei Bandsilicaten beträgt 4:11. In solchen silicatischen Bändern sind Hohlräume vorhanden, in die (OH)- und F-Ionen eintreten können. In der chemischen Summenformel wird das durch einen vertikalen Strich zum Ausdruck gebracht. Ein Mineral aus der Gruppe der Amphibole istAktinolith (Ca2(Mg,Fe)5[(OH)2|Si8O22]).

Schichtsilicate (Phyllosilicate)

[Bearbeiten |Quelltext bearbeiten]
Hauptartikel:Schichtsilikate
Schichtsilicat

Bei höherem Polymerisationsgrad bilden sich statt KettenstrukturenSchichtstrukturen aus SiO4-Tetraedern. Innerhalb einer Schicht teilt sich dabei jedes Siliciumatom drei seiner Sauerstoffionen mit seinen Nachbarn. Das Si:O-Verhältnis derSchichtsilicate beträgt 2:5. Die Schichtsilicate werden unterteilt in Zwei- und Dreischichtsilicate. Eine weitere Unterteilung berücksichtigt die Struktur und die Ionen, die sich zwischen zwei Tetraederschichten befinden. Der Hohlraum zwischen zwei Schichten kann mit (-OH), (-OMe+) besetzt sein und die Schichten mitDipol-Dipol-Kräften oderIonenbindungen verknüpfen.

Zu den Schichtsilicaten gehörenMineralgruppen wieGlimmer,Talk,Serpentin undTonminerale wieVermiculit, Beispiele sindMuskovit (ein Dreischichtsilicat) (KAl2[(OH)2|AlSi3O10]) undKaolinit (ein Zweischichtsilicat) (Al4[(OH)8|Si4O10]).

Synthetische Schichtsilicate, wie SKS-6 (Na2Si2O5) werden inWaschmitteln verwendet.[3] SKS-6 Schichtsilicate zeigen Eigenschaften wie Natrium-Zeolithe. Die schichtverknüpfenden, hydratisierten Natriumionen sind inSuspensionen selektiv austauschbar, beispielsweise gegen Calciumionen, und eignen sich somit zurWasserenthärtung alsIonentauscher und zeigen gute Eigenschaften alsWaschalkalie.

Gerüstsilicate (Tectosilicate)

[Bearbeiten |Quelltext bearbeiten]
Hauptartikel:Gerüstsilikate
β-Quarz

Bei Gerüstsilicaten gehört jedes Sauerstoffion gleichzeitig zwei benachbarten Tetraedern an (jeder Tetraeder ist über seine Ecken mit Nachbartetraedern verknüpft). Dadurch entstehen dreidimensionale Netzwerkstrukturen. Es ergibt sich die chemische Summenformel SiO2. Stellvertretend fürSiliciumdioxid-Verbindungen sei der hier dargestellteQuarz in derModifikation β-Quarz genannt. Für weitere Gerüstsilicate muss Silicium durch Aluminium ersetzt werden. Der Ladungsausgleich erfolgt durch Einlagerung vonKationen. Zu den Gerüstsilicaten gehören dieFeldspäte undFeldspatvertreter, eine wegen ihrer Häufigkeit außerordentlich wichtige Gruppe von Mineralen. Beispiele sind Minerale aus der Mischreihe derPlagioklase (Albit – Anorthit): (NaAlSi3O8 – CaAl2Si2O8).

In das weitmaschige Gitternetz einigerFeldspatvertreter können sogar großeMoleküle wieH2O eingebaut werden. Bei hoher Temperatur entweicht das Wasser, wird jedoch bei niedriger Temperatur in mit Wasserdampf gesättigter Umgebung wieder insKristallgitter eingebaut. Diese wasserhaltigen Minerale gehören zurGruppe der Zeolithe (z. B.Natrolith (Na2[Al2Si3O10]·nH2O)).

Amorphe Silicate

[Bearbeiten |Quelltext bearbeiten]
Amorphes Silicat ohne Fernordnung

Opal ist amorphes Siliciumdioxid mit eingelagertem Wasser (SiO2 · n H2O). Er wird wie Quarz von einigen Autoren zu denOxidmineralen gestellt.Die hochstrukturierten Schalen vonKieselalgen (Diatomee) und vonStrahlentierchen (Radiolaria) sind aus amorphem Siliciumdioxid (SiO2) aufgebaut.

Klassifikation nach Kostov

[Bearbeiten |Quelltext bearbeiten]

Diese Einteilung beruht hauptsächlich auf der chemischen Zusammensetzung des Silicats und seiner Kristallmorphologie.

Technische Silicate

[Bearbeiten |Quelltext bearbeiten]
  • Talk ist vielseitig verwendbar. Er wird in der Farben- und Glasindustrie und als Schmiermittel verwendet. Als gemahlener Grundstoff (dannTalcum genannt) ist er in vielen Kosmetika enthalten.
  • Asbest (Chrysotil) wurde auf Grund seiner Feuerfestigkeit und seiner Eignung als Isolier- und Dämmmaterial besonders im Baugewerbe verwendet, ist aber wegen gesundheitsschädigender Nebenwirkungen in der EU seit 2005 verboten. Zur Herstellung feuerfester und korrosionsbeständiger Werkstoffe sind auch die Minerale Zirkon,Muscovit,Andalusit,Sillimanit undDisthen geeignet.
  • Kaolinit ist ein wichtiger Rohstoff für die Keramikindustrie zur Herstellung feuerfester Tiegel und von Mauer- und Dachziegeln.
Zeolith ZSM 5
  • In der Trinkwasseraufbereitung werden Silicate als Korrosionsinhibitor weit verbreitet eingesetzt. Als wirksame Inhibitoren sind Phosphat-Silicat-Gemische und phosphatfreie, carbonataktivierte Silicate bekannt.

Vorkommen

[Bearbeiten |Quelltext bearbeiten]

Verwendung

[Bearbeiten |Quelltext bearbeiten]

Als Schmuck- und Edelsteine

[Bearbeiten |Quelltext bearbeiten]

Industrie

[Bearbeiten |Quelltext bearbeiten]

Nachweis

[Bearbeiten |Quelltext bearbeiten]

Silicat kann mit der Wassertropfenprobe nachgewiesen werden. Die Substanz wird in einem Bleitiegel mitCalciumfluorid undSchwefelsäure versetzt. In Anwesenheit von Siliciumdioxid entsteht gasförmigesSiliciumtetrafluorid, das an einem befeuchteten, schwarzen Filterpapier über der Tiegelöffnung wieder zu weißem Siliciumdioxid kondensiert

2 F+H2SO4SO42+2 HF{\displaystyle \mathrm {2\ F^{-}+H_{2}SO_{4}\longrightarrow SO_{4}^{2-}+2\ HF} }
Fluoridanionen reagieren mit Schwefelsäure zu Sulfatanionen undFluorwasserstoff.
SiO2+4 HFSiF4+2 H2O{\displaystyle \mathrm {SiO_{2}+4\ HF\rightleftarrows SiF_{4}\uparrow +2\ H_{2}O} }
Siliciumdioxid reagiert mit Fluorwasserstoff zu Siliciumtetrafluorid und Wasser. DieHinreaktion läuft unten im Tiegel ab, die Rückreaktion oben am Deckel.

Literatur

[Bearbeiten |Quelltext bearbeiten]
  • W. L. Bragg:The structure of silicates. In:Z. Kristallogr. 74. 1930, 237–305.
  • W. A. Deer, W. A. Howie und J. Zussman:Rock-Forming Minerals, Volume 1A: Orthosilicates. Longman, London, 2. Auflage, 1982.
  • I. Kostov:Crystal chemistry and classification of silikate minerals. In:Geokhimiya, Mineralogiya i Petrologiya. 1. 1975, 5–41.
  • F. Liebau:Die Systematik der Silicate. In:Naturwissenschaften. 49. 1962, 481–491.
  • F. Liebau:Structural Chemistry of Silicates. Springer-Verlag, Berlin 1985.
  • Martin Okrusch, Hartwig E. Frimmel:Mineralogie: Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde. Springer-Verlag, Berlin, 10. Auflage, 2022.
  • S. Na’ray-Szabo:Ein auf der Kristallstruktur basierendes Silicatsystem. In:Z. Physik. Chem. Abt. B9. 1930, 356–377.
  • H. Pichler und C. Schmitt-Riegraf:Gesteinsbildende Minerale im Dünnschliff. Enke Verlag 1987.
  • P. H. Ribbe:Reviews in mineralogy Volume 5: Orthosilicates. Mineralogical Society of America, Washington, 2. Auflage, 1982
  • J. V. Smith und W. L. Brown:Feldspar Minerals, Volume 1. Springer-Verlag, Berlin, 2. Auflage; 1988
  • H. Strunz:Strunz mineralogical tables : chemical structural mineral classification system. 9. Auflage, Schweizerbart, Stuttgart.ISBN 978-3-510-65188-7
  • W. E. Tröger:Optische Bestimmung der gesteinsbildenden Minerale, Teil 1: Bestimmungstabellen. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 4. Auflage, 2001.
  • W. E. Tröger:Optische Bestimmung der gesteinsbildenden Minerale, Teil 2: Textband. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 1967.
  • T. Zoltai:Classifikation of silicates and other minerals with tetrahedral structures. In:American mineralogist. 45. 960–973, 1960

Weblinks

[Bearbeiten |Quelltext bearbeiten]
Wikibooks: Praktikum Anorganische Chemie/ Silicat – Lern- und Lehrmaterialien
Commons: Silicate – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Silikat – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

[Bearbeiten |Quelltext bearbeiten]
  1. Duden Silikat. Abgerufen am 6. Oktober 2021. 
  2. DWDS Silikat. Abgerufen am 6. Oktober 2021. 
  3. WeylClean® SKS-6 - The WeylChem Group. Abgerufen am 9. August 2019 (englisch). 
  4. Werner Stöber, Arthur Fink, Ernst Bohn:Controlled growth of monodisperse silica spheres in the micron size range. In:Journal of Colloid and Interface Science. 26, 1968, S. 62–69,doi:10.1016/0021-9797(68)90272-5.
  5. Christian Schittich,Gerald Staib, Dieter Balkow, Matthias Schuler,Werner Sobek:Glasbau Atlas. Walter de Gruyter, 2006,ISBN 3-0346-1553-1,S. 62 (eingeschränkte Vorschau in der Google-Buchsuche). 
Normdaten (Sachbegriff):GND:4077444-2(lobid,OGND,AKS)
Abgerufen von „https://de.wikipedia.org/w/index.php?title=Silicate&oldid=253316688
Kategorien: