Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unterRöntgen (Begriffsklärung) aufgeführt.
Steril abgedeckter Bildwandler bei einer Knochenoperation
Röntgen (benannt nach dem PhysikerWilhelm Conrad Röntgen), genannt auchRöntgenuntersuchung, ist ein weit verbreitetesbildgebendes Verfahren, bei dem ein Körper unter Verwendung einesRöntgenstrahlers durchstrahlt wird. Die Durchdringung des Körpers mitRöntgenstrahlen wird in Bildern dargestellt, die alsRöntgenbilder,Röntgenaufnahmen oderRadiographien (auchRadiografien; vonlateinischradius „Strahl“ und-graphie) bezeichnet werden. Gesamthaft werden die technischen Geräte zur Bildgebung alsRöntgenapparat oderRöntgengerät bezeichnet.
Die Bilder werden etwa auf einemfluoreszierenden Schirm sichtbar. Bei derDurchleuchtung mit einerRöntgenkamera wird einRöntgenbildverstärker benötigt. Auch geeignetes Filmmaterial kann verwendet werden (Radiographie mitRöntgenfilm). Stand der Technik ist jedochdigitales Röntgen (digitale Radiographie). Hier kommen Phosphorplatten (Röntgenspeicherfolie) oder elektronische Sensoren zum Einsatz, zum BeispielCCD-Sensoren. (Für die medizinischen Verfahren sieheRadiologie#Radiographie.) Die Anwendung von Röntgenstrahlen dient regelmäßig derRöntgendiagnostik, kann aber auch nur auxiliär ohne eigenen diagnostischen Zweck eingesetzt werden.
Am 8. November 1895 entdeckteWilhelm Conrad Röntgen in Würzburg die unsichtbaren Strahlen. Er experimentierte mit einer fast luftleerenKathodenstrahlröhre aus Glas. Er deckte sie mit Pappe ab, aber die Strahlen konnten sie durchdringen und zeigten ein zufällig auf dem Tisch liegendes Objekt auf dem Fluoreszenzschirm.[1][2] Nachdem er im Anschluss an sechswöchige Laborarbeiten am 22. Dezember die linke Hand seiner Ehefrau, Bertha Röntgen, eine halbe Stunde lange bestrahlt und damit die erste Röntgenaufnahme am Menschen durchgeführt hatte,[3] übergab er am 28. Dezember seine erste schriftliche MitteilungÜber eine neue Art von Strahlen derPhysikalisch-Medizinischen Gesellschaft zu Würzburg und am 23. Januar 1896 kam es zur ersten öffentlichen Demonstration seiner Entdeckung.[4][5] Er verzichtete auf einePatentierung, damit die Röntgenapparate schneller eingesetzt werden konnten.[6] Für seine ab 1896/1897[7] weltweit genutzte Entdeckung erhielt Röntgen 1901 den ersten Nobelpreis für Physik.Ausgehend von Röntgens Entdeckung entwickelteCarl Heinrich Florenz Müller gemeinsam mit Ärzten die erste wassergekühlteAnode.
Historisches Röntgengerät zum „Durchleuchten“ der Lunge
In derMedizin dient das Röntgen zur Feststellung von Anomalien im Körper, die im Zusammenhang mit Symptomen, Zeichen und eventuell anderen Untersuchungen eineDiagnose ermöglichen (Röntgendiagnostik). Die unterschiedlich dichten Gewebe des menschlichen (oder tierischen) Körpers absorbieren die Röntgenstrahlen unterschiedlich stark, so dass man eine Abbildung des Körperinneren erreicht (Verschattung,Aufhellung und andereRöntgenzeichen). Das Verfahren wird zum Beispiel häufig bei Verdacht auf einenKnochenbruch angewendet: Zeigt das Röntgenbild eine Unterbrechung der Kontinuität des Knochens, ist der Verdacht bestätigt.
Das herkömmliche Röntgenbild zeigt eine Abbildung des dreidimensionalen Objektes (z. B. eines Sprunggelenkes – ugs: Knöchel) auf einer zweidimensionalen Fläche. Daher werden viele Objekte – wie Extremitäten mit fraglich gebrochenen Knochen – aus zwei Richtungen (im Fachjargon: „in 2 Ebenen“) geröntgt. Was aus einer Perspektive (oder Betrachtungsrichtung) noch nicht auffällt, tut dies eventuell aus der anderen. Oder wenn zwei Knochenteile eines Bruches in einer Richtung hintereinander liegen, lässt sich eine Verschiebung der Knochenbruchenden (im Fachjargon: „Dislokation oder Luxation“) erst auf einer zweiten Aufnahme aus einer anderen Richtung darstellen.Hierzu stehen zu nahezu allen darstellbaren Körperteilen Standardaufnahmetechniken zur Verfügung, um es dem Betrachter nicht jedes Mal abzuverlangen, sich in die Darstellung „einzudenken“.Ordnet der Arzt Röntgenaufnahmen eines Sprunggelenkes in zwei Ebenen an, kann er davon ausgehen, dass er eine seitliche (im Fachjargon: „transversale“) Aufnahme mit Darstellung der Gelenkflächen von Schienbein und Sprungbein (und ein paar anderen), sowie eine Aufnahme von vorne nach hinten (im Fachjargon: a.p. = anterior – posterior) mit gut beurteilbaren Innen- und Außenknöcheln erhält.Sollte es damit noch nicht klar sein, wird vielleicht eine Schichtaufnahme angeordnet, um statt der einfachen „Übersichtsaufnahmen“ Schnittbilder zu erhalten.
Schichtweise Röntgenaufnahmen werden alsTomographie bezeichnet. Von den „konventionellen Schichtaufnahmen“ (Röntgentomographie) unterscheidet sich die modernere Röntgen-Computertomographie (CT). Bei dieser berechnet ein Computer die Schnittbilder aus den elektronischen Daten, die bei Röntgenaufnahmen aus verschiedenen Richtungen erzeugt werden. CT-Aufnahmen haben eine wesentlich höhere Bildqualität.
Häufig werden dem Patienten bei oder vor der RöntgenuntersuchungKontrastmittel verabreicht. Manche Strukturen, die sich normalerweise nicht abgrenzen lassen, können so hervorgehoben werden. Zum Teil lässt sich mit einem Kontrastmittel auch die Funktion eines Organsystems darstellen, so etwa in derUrografie. Je nach Fragestellung bieten sich verschiedene Substanzen und Darreichungsformen an.
Um die räumliche Lage insbesondere gebrochener Knochen oder ausgerenkter Gelenke gut erkennen zu können, werden von einer Stelle im Körper zumeist zwei bis drei Bilder aus unterschiedlicher Projektionsrichtung angefertigt.
Neben Standbildern können – zumindest seit 2007 – etwa bei Einrenkungen und Zurechtrückung von Knochenteilen Röntgen-Videos gefilmt und live am Bildschirm angezeigt werden, um das Öffnen des Körpers per Skalpellschnitt zu vermeiden und dennoch ein aufschlussreiches Bild von der sich verändernden Lage der Knochen zu erhalten. Die im bestrahlten Operationsfeld agierenden Hände der Unfallchirurgen werden dabei möglichst mit Blei-Gummi-Handschuhen geschützt.
Für unterschiedliche Bereiche des Körpers werden unterschiedliche „Strahlenqualitäten“ benötigt, um unterschiedlich dichte Gewebe, wie z. B. Fettgewebe oder Knochen zu durchdringen. In der Röntgendiagnostik spricht man von weicher und harter Strahlung. Ausschlaggebend ist die Spannung inKilovolt (kV), die derRöntgenröhre zugeführt wird. Je nach dem abzubildenden Körperbereich bzw. der gewünschten Bildaussage wird die Röhrenspannung zwischen etwa 25 und 35 kV bei der Mammografie und etwa 38 und 120 kV bei den übrigen Körperregionen gewählt.
Je weicher die Strahlung (niedrige kV-Werte) ist, desto größer ist der Anteil der vom Gewebe absorbierten Strahlung. Dadurch werden auch feinste Gewebeunterschiede auf demRöntgenfilm sichtbar gemacht. Dies ist der Fall bei derMammografie (Röntgenuntersuchung des Brustgewebes), jedoch ist die Strahlenbelastung des durchstrahlten Gewebes dadurch relativ hoch.Harte Strahlung (über 100 kV) durchdringt Gewebe und Materialien (Gips und sogar Bleischürzen von geringerer Dicke) wesentlich leichter. Kontrastunterschiede werden stark abgemildert, wie z. B. bei Lungenaufnahmen (120 kV), bei denen sonst im Bereich der Rippen keine Beurteilung der Lungenstruktur möglich wäre.
Nicht nur Röntgenstrahlung führt zu Strahlenbelastung. Jedes Jahr sind wir einer natürlichen Strahlenbelastung von ~2,4 mSv/a ausgesetzt, die sich zusammensetzt aus kosmischer Strahlung 0,3 mSv/a, Erdstrahlung 0,5 mSv/a, natürlicher Radoninhalation 1,3 mSv/a und Aufnahme natürlicher radioaktiver Stoffe 0,3 mSv/a.
Hinzu kommen ~1,53 mSv/a zivilisatorische Strahlenbelastung, davon aus kerntechnischen Anlagen <0,01 mSv/a, weiter durch Anwendung radioaktiver Stoffe und ionisierender Strahlung in Forschung, Technik und Haushalt <0,01 mSv/a, weiter verursacht der Fall-out von Kernwaffenversuchen <0,01 mSv/a und schließlich bedingen Anwendung radioaktiver Stoffe und ionisierender Strahlung in der Medizin den Großteil von 1,5 mSv/a. Die Strahlenbelastung in der Medizin hat somit einen nicht unerheblichen Anteil an der gesamten Strahlenbelastung der Bevölkerung, der weitaus größte Anteil entfällt hierbei jedoch auf wenige, schwerkranke Patienten.
Die durchschnittliche Strahlenbelastung durch dasReaktorunglück in Tschernobyl (26. April 1986) lag 1990 in Deutschland bei 0,025 mSv. Eine 10-stündige Flugreise entspricht 0,1 mSv. Die kosmische Strahlenbelastung in 2000 m Höhe gegenüber Meereshöhe ist 0,6 mSv höher. Der regionale Unterschied der natürlichen Strahlung innerhalb von Häusern in Deutschland beträgt 0,6 mSv.
Die oben aufgeführten Beispiele sollen als Vergleichsmaßstab für die folgende Auflistung von Röntgenuntersuchungen dienen. Eine einmalige Röntgenuntersuchung der folgenden Untersuchungsart führt zu einer zusätzlichen effektiven Dosis:[9]
Röntgenuntersuchung
zusätzliche effektive Dosis
Zähne/Kiefer
0,02 mSv
Schädel
0,2 mSv
Rippen
0,3 mSv
Thorax (Lunge)
0,02 mSv
Bauchraum
0,3 mSv
Halswirbelsäule
0,2 mSv
Brustwirbelsäule
0,5 mSv
Lendenwirbelsäule
0,4 mSv
Becken
0,1 mSv
In der Regel dauert es Jahre, bis eine strahleninduzierteKrebserkrankung auftritt, beispielsweise infolge einerStrahlenkrankheit. Für dieLeukämie (Blutkrebs) geht man, in diesem Dosisbereich, von 15 Jahren, für andere Krebsformen von 40 Jahren aus.[10]
Da die angewendeten Strahlendosen in der Röntgendiagnostik potenziell schädlich für den Patienten und den Anwender sind, wird in derRadiologie besonderer Wert auf denStrahlenschutz gelegt. In Deutschland wird Patienten im Falle einer Röntgenuntersuchung vom untersuchenden Arzt angeboten, Informationen wie Datum und bestrahlte Körperregion in einenRöntgenpass eintragen bzw. sich einen solchen Pass ausstellen zu lassen. Die Sicherheit des Operateurs wird dadurch gewährleistet, dass dieser in einem Nachbarraum eine Taste betätigen muss, ohne die der Röntgenapparat nicht arbeitet. Durch ständiges Gedrückthalten des Auslöseknopfes unter gleichzeitiger Beobachtung des Patienten wird verhindert, dass das Röntgen unkontrolliert ausgelöst oder bei Ohnmacht des Operateurs ungewollt fortgesetzt wird.
Jedes Jahr werden weltweit mehrere Milliarden Bilder mithilfe von Strahlentechnik angefertigt – ungefähr ein Drittel dieser Aufnahmen bei Patienten mit akutem Herzinfarkt. Zwischen den Jahren 1980 und 2006 ist die jährliche Dosis um schätzungsweise 700 % angestiegen.[11]
Deutschland nimmt beim Röntgen einen Spitzenplatz ein: etwa 1,3 Röntgenaufnahmen und 2 mSv pro Einwohner und Jahr. Auf dieseStrahlenbelastung lassen sich theoretisch 1,5 % der jährlichen Krebsfälle zurückführen.[12] Ärzte unterschätzen nach Meinung des Kinderradiologen Christoph M. Heyer die Strahlenbelastung bei der Computertomographie: Diese machten im Jahr 2003 gut 6 % aller Röntgenuntersuchungen aus, waren aber für mehr als 50 % der medizinischenStrahlenexposition verantwortlich.[13]
Beispiel: Bei der Koronaruntersuchung mittels Computertomographie (CT) erkaufen sich Patienten die erhöhte Sensitivität mit einem gesteigerten Krebsrisiko. So errechneten amerikanische Wissenschaftler, dass bei Zwanzigjährigen eine von 143 mittelsKoronar-CT untersuchten Frauen im Laufe ihres Lebens infolge dieserAngiographie-Strahlung an Krebs erkrankt, aber nur einer von 686 gleich alten Männern. Die CT-Angiographie der Koronarien scheint vor allem bei Frauen und jungen Menschen das Krebsrisiko nicht unerheblich zu erhöhen.[14] Kommt ein Patient mit akutemMyokardinfarkt in die Klinik, wird ihm oft eine Strahlendosis von insgesamt 14,5 mSv verabreicht, was etwa 73Thorax-Röntgen-Bildern entspricht. Die Dosis, die ein Infarktpatient durch dieseKatheteruntersuchung erhält, entspricht 3/4 der gesetzlich festgelegten Jahresdosis für Arbeiter in deutschen Kernkraftwerken (20 mSv/a).[15]
In einer groß angelegten Studie hatten sie die Daten von 64.074 Patienten analysiert, die zwischen 2006 und 2009 in Lehrkrankenhäusern der USA wegen eines akutenHerzinfarktes behandelt worden waren. Insgesamt wurden in diesem Zeitraum 276.651 Untersuchungen mit ionisierenden Strahlen an diesem Kollektiv durchgeführt. 83 % der Herzinfarktpatienten erhielten Röntgenaufnahmen des Thorax, 77 % Katheteruntersuchungen. Zwar sollten laut Meinung des Referenten notwendige Untersuchungen, die ionisierende Strahlen beinhalten, nicht unterbleiben – man sollte aber sicher sein, dass diese angemessen sind.
Untersuchungen von US-amerikanischen Forschern ergaben, dass das Risiko für gutartigeHirntumoren sich durch häufiges Röntgen der Zähne verdreifacht, bei Kindern unter zehn Jahren sogar verfünffacht.[16]
Unter welchen Voraussetzungen ein Arzt für Hautschäden wegen einer röntgenärztlichen Untersuchung haftet, ist Gegenstand einer Entscheidung desOberlandesgerichts Jena.[17]
Die Absorption von Röntgenstrahlung ist abhängig von ihrem Energieniveau (erzielt über unterschiedlich hohe Beschleunigungsspannung) und steigt mit der Elektronendichte des Objekts, hängt also im Wesentlichen von dessen Dicke und seiner Atomdichte (Atome/Volumen) sowie der Ordnungszahl (Kernladungszahl) Z der Atome des Materials ab. Hohle Organe (Atemwege, Lunge, Magen, Darm, Blase) oder Körperhöhlen (Bauchraum) können durch ihren Gehalt an Luft (Gas), eventuell aufgeblasen (mit Luft, Lachgas, Helium) durch wenig Absorption im Gas dargestellt werden.Andererseits werden Knochen durch das vergleichsweise „schwere“ Calcium-Atom (Z=20) als Schatten abgebildet, wenn rundum im Wesentlichen Wasser und Kohlenwasserstoffe mit Sauerstoff als schwerstem Atom (Z=8) vorliegt. Schon Zahn- und Gelenksprothesen aus Titan (Z=22) heben sich durch ein Mehr an Absorption vom Knochen ab. Solche auf Basis von Stahl (Eisen: Z=26) noch stärker, ebenso die Rechts-/Links-Markierungsringe aus NiRo-Stahl oder Messing.
Historisch als frühes oder erstes Kontrastmittel wurde Thorium (Z=90) (Thorotrast) in derAngiographie eingesetzt, wegen seiner Radioaktivität um 1955 jedoch verboten. Bariumsulfat BaSO4 (Ba: 56) in wässriger Aufschlämmung dient zum Abbilden des Magen-Darm-Trakts samt dem Tempo der Passage. OrganischeIodverbindungen (I: 53) zur Angiographie (intravenös oder intraarteriell) früh schon Per-Abrodil = Diethanolamin-3,5-diiodpyridon-4-essigsäure mit akuten Nebenwirkungen, später verträglich aromatische Iodderivate.
Mittlerweile giltdigitales Röntgen als Standard in derBildgebenden Diagnostik. Digitales Röntgen hat dabei große Vorteile gegenüber dem herkömmlichen analogen Verfahren. Als wichtigster Punkt gilt die Reduzierung derStrahlenbelastung.
Vorteile des digitalen Röntgens gegenüber dem analogen Röntgen:
Reduktion der Strahlenbelastung
Die Bilder sind nicht über- oder unterbelichtet
Aufnahmen sofort verfügbar
Nachbearbeitung am Computer
Weder Dunkelkammer noch Entwicklungsgerät mit Verbrauchsmaterialien benötigt
Serielles Röntgen, auchserielle Radiographie genannt, ist ein medizinisches Verfahren, bei dem eineSerie von Röntgenaufnahmen (auch bekannt als Röntgenbilder oder Radiographien) erstellt wird, um die Bewegung oder Entwicklung einer anatomischen Struktur im Laufe der Zeit zu beobachten.[19]
Lewis Gregory Cole war ein Pionier der Technik, die er „serielle Radiographie“ (serial radiography) nannte.[20] Im Jahr 1918 wurden Röntgenstrahlen in Verbindung mit Filmkameras verwendet, um das menschliche Skelett in Bewegung zu erfassen. Im Jahr 1920 wurde es vomInstitute of Phonetics in England verwendet, um die Bewegungen von Zunge und Zähnen beim Studium der Sprachen aufzuzeichnen.
Das Verfahren wird häufig bei der Behandlung von Verletzungen, Erkrankungen oder postoperativen Veränderungen verwendet, um den Fortschritt oder die Heilung zu verfolgen. Ein serielles Röntgen kann auch bei derDiagnose von Erkrankungen nützlich sein, um festzustellen, wie sich ein Zustand entwickelt oder wie gut eine Behandlung wirkt.
Während eines seriellen Röntgens wird der Patient in verschiedenen Positionen oder Bewegungen aufgenommen, um den Verlauf der Veränderungen zu dokumentieren. Die Bilder werden normalerweise zeitlich geordnet, um die Entwicklung des Zustands über die Zeit zu veranschaulichen.
In biologischen Fachbereichen, wie beispielsweise derZoologie, wird versucht, mit Hilfe von Röntgen-basierten Darstellungen verschiedenste Fragestellungen zu beantworten. So kann beispielsweise der Aufbau desKreislaufsystems beiWirbellosen und seine Lage im Körper besser und schneller untersucht werden, als es mit konventionellen Methoden wie Präparation unter demMikroskop oder histologischen Schnitten möglich wäre.[21]
Indem man dieBeugung von Röntgenstrahlen beim Durchtritt durch eine Substanzprobe misst, lässt sich die Kristallstruktur von Substanzen aufklären.Moleküle können so visualisiert werden. Bei organischen Molekülen wieDNA,RNA undProteinen lässt die Struktur Schlüsse auf die Funktion zu, daher greifenMolekularbiologen besonders oft auf die Röntgen-Strukturanalyse zurück. Die einzelnen Vorgänge bei diesem Verfahren werden in dem ArtikelKristallstrukturanalyse erläutert.
Neben der Röntgenbeugung kann auch Röntgenabsorption gemessen werden. Dies wird bei derRöntgenabsorptionsspektroskopie als Verfahren zur Strukturaufklärung verwendet. Die Methode ist nicht auf kristalline Proben beschränkt, allerdings ist sie nur für die Aufklärung von Nahstrukturen geeignet. Insbesondere im Bereich biologischer Proben wird die Röntgenabsorptionsspektroskopie zunehmend zur gezielten Aufklärung aktiver Zentren von Enzymen verwendet.
Die chemische Analyse von Gesteinen und Mineralen ist mit Hilfe derRöntgenfluoreszenz-Analyse möglich. Durch Bestrahlung mit Röntgenstrahlen von ca. 50 kV werden die in einer Probe enthaltenenchemischen Elemente zu einer Fluoreszenz-Strahlung angeregt, deren Wellenlänge charakteristisch für das betreffende Element ist. Durch Messung der Wellenlänge dieser Strahlung können die Elemente qualitativ bestimmt werden. Durch Messung der Intensität und Vergleich mit einer Standardprobe bekannter Zusammensetzung kann auch eine quantitative Analyse durchgeführt werden. Die Methode ist im Gegensatz zu nasschemischen Analyseverfahren zerstörungsfrei, d. h., die Probe ist nach der Analyse unverändert und kann für andere Zwecke verwendet werden. Allerdings muss eine geologische Probe fein gemahlen und zu einer flachen Tablette (gewöhnlich mit einem Bindemittel) gepresst werden.
In derArchäologie wird die Röntgenaufnahme beispielsweise zum Durchleuchten vonMumien genutzt, wenn derenEinbandagierung nicht zerstört werden soll. Ferner können kompliziert aufgebaute Funde wie Waffen, verzierteOrnamente oder unter Verschluss befindliche Objekte in Truhen ohne Öffnung untersucht werden.
Kurt Wehlte setzte erstmals die Röntgentechnik ein, um die verschiedenen Schichten des Bildaufbaus bei Gemälden sichtbar zu machen. Er gründete in Berlin die Röntgenbildstelle fürGemäldeuntersuchung.
Mobile Durchleuchtungseinheit für LKW und Busse der Bundeszollverwaltung
An manchen Kontrollpunkten wird Röntgentechnik inScannern angewendet, um zeitsparend, aber wirksam Hohlräume oderMenschen zu durchleuchten.
Es gibt Röntgengeräte, die ganze LKW-Ladungen oder Container durchleuchten können[22] oder auch mobile Geräte, welche zur Durchleuchtung eines ganzen Flugzeugs ausgelegt sind.[23]
Röntgentechnik wird auch bei derDelaborierung von Bomben zur Hilfe genommen; dies dient derAnalyse.
Weitere Anwendungen findet man beim Röntgen in derWerkstoffprüfung.Durch Röntgen kann man im Verlauf derDurchstrahlungsprüfung Objekte auf Risse und Hohlräume im Innern untersuchen. Dies geschieht mit sogenannten Röntgenrefraktionsanlagen, meist mit einem Belastungsmechanismus zum leichten Öffnen der Mikrorisse (englisch: crazes).[24]
Qualitätskontrolle in der Nahrungsmittelproduktion
Immer häufiger verlangen große Handelsketten von den Nahrungsmittelherstellern eine bessere Detektion von Fremdkörpern zur Erhöhung der Produktqualität. Nachdem der Metalldetektor in den letzten Jahren das Mittel der Wahl war, kommen jetzt immer häufiger Röntgensysteme zum Einsatz. Diese Röntgensysteme bestehen zum einen aus dem bekannten Röntgensystem (Röhre/Kollimator und Empfänger) sowie aus einer weitentwickelten computergestützten Bildverarbeitung mit Aussteuergerät. Das heißt, das Röntgenbild des jeweiligen Nahrungsmittels wird hinsichtlich möglicher Verunreinigungen (Kontaminationen) mittels spezieller Computerprogramme untersucht. Sollte die Röntgenbildanalyse ergeben, dass ein Nahrungsmittel verunreinigt ist, so wird dem angeschlossenen Aussteuergerät umgehend mitgeteilt, dass dieses Nahrungsmittel auszusteuern ist. Es landet im Abfallbehälter.
Allerdings sind gerade zu Beginn des Einsatzes solcher Röntgensysteme in der Nahrungsmittelindustrie Hürden zu überwinden. DieAngst vor einer Belastung durch mögliche Strahlung ist oft groß und bedarf einer Aufklärung. Abgesehen von Röntgensystemen, dieNahrungsmittel bestrahlen, um sie haltbarer zu machen, ist die Röntgenuntersuchung hinsichtlich möglicherKontaminationen absolut ohne jegliche Wirkung auf das Nahrungsmittel selbst. Das Röntgen hat hier weder eine haltbarmachende noch eine zerstörende Wirkung. Was bleibt, ist die Sicherheit des Röntgensystems für den Anwender. Da Röntgen in Deutschland gemäß derVerordnung über den Schutz vor Schäden durch Röntgenstrahlen genehmigungspflichtig ist, sind die Hürden für mögliche Verletzungen sehr hoch. Letzten Endes hängt die jeweilige Sicherheit von dem Betreiber selbst und dem erworbenen System ab. Vergessen sollte man jedoch nicht, dass das medizinische Röntgen und Flugreisen (in normaler Höhe) temporär weit größere Belastungen mit sich bringen, als es bei einem Röntgensystem zur Qualitätssicherung der Fall ist. Wer sich in feuchten Kellern von Häusern oder in Wasserwerken aufhält, bekommt in der Regel höhere Ausschläge auf dem Messgerät (Dosimeter) als vor dem eingeschalteten Röntgensystem. Die Strahlung kommt aus dem Erdboden (in erster LinieRadon sowie andere Produkte derZerfallsreihe von Uran und Thorium) wie auch aus den Steinwänden und dem Weltraum zu uns und wird mitgemessen.
Ein Röntgensystem kann metallische und nichtmetallische Kontaminationen detektieren, jedoch nicht alle. Röntgen ist zum heutigen Zeitpunkt (2005) die einzige Möglichkeit, um möglichst viele und unterschiedliche kleine Kontaminationen in Nahrungsmittel erkennen zu können. Die Annahme, das Produkt sei nach der Untersuchung zu 100 % kontaminationsfrei, ist jedoch falsch. Sicher ist, dass in den kommenden Jahren mittels besserer Technik das Detektionsvermögen noch weiter gesteigert werden kann. Man wird aber nie alles finden können. Das hängt in erster Linie damit zusammen, dass je näher die „Röntgeneffekte“ von Kontaminationen und dem eigentlichen Produkt zusammenliegen, es dem bildverarbeitenden System auch umso schwerer fällt, zwischen beiden zu unterscheiden. In der sogenanntenHounsfield-Skala sind Röntgeneffekte unterschiedlichster Materialien aufgelistet. Je näher sich die jeweiligen Materialien in dieser Liste sind, umso schlechter vermag ein Röntgendetektor sie zu unterscheiden (Beispiel: Fleisch und Fett). Ist hingegen der Unterschied groß, wie z. B. zwischen einem Käsestück (verpackt oder unverpackt) und einem kleinen Stein oder Eisen- oder Aluminiumstück, so fällt es dem Röntgendetektor besonders leicht, die Verunreinigungen im Käse zu erkennen und auszusortieren.
Ulrich Spiller:Praktikum der Röntgendiagnostik an Magen, Duodenum und Gallenblase. Anleitung zum Lesen des Schleimhautbildes, der Zielaufnahme und des Cholecystogrammes. Mit einer Einleitung von Fritz Munk. Berlin 1932.
Ulrich Spiller:Praktikum der Röntgendiagnostik der Thoraxorgane. Bearbeitet und herausgegeben von K. H. Krohn. Walter de Gruyter & Co., Berlin 1938.
Otto Glasser:Wilhelm Conrad Röntgen und die Geschichte der Röntgenstrahlen. 2. Auflage. Springer, Berlin 1959.
E. C. Petri:Der Röntgenfilm. Eigenschaften und Verarbeitung. Fotokino, Halle 1960.
Hans Rudolf Schinz, W. Bänsch, Walter Frommhold, R. Glauner, Erwin Ühlinger, J. Wellauer (Hrsg.):Lehrbuch der Röntgendiagnostik. Thieme, Stuttgart 1979.
Howard H. Seliger:Wilhelm Conrad Röntgen and the Glimmer of Light. Physics Today, November 1995, 25–31,doi:10.1063/1.881456.
Günter W. Kauffmann (Hrsg.):Röntgenfibel: Praktische Anleitung für Eingriffe in der Röntgendiagnostik und interventionellen Radiologie. 3. Aufl., Springer Verlag, Berlin / Heidelberg / Tokio / New York 2001,ISBN 3-540-41018-X.
Wilfried Angerstein (Hrsg.):Grundlagen der Strahlenphysik und radiologischen Technik in der Medizin. Hoffmann, Berlin 5. neu bearb. A. 2005,ISBN 3-87344-123-3.
Ulrich Mödder, Uwe Busch (Hrsg.):Die Augen des Professors. Wilhelm Conrad Röntgen – eine Kurzbiografie. Vergangenheitsverlag, Berlin 2008,ISBN 978-3-940621-02-3.
↑Martin Droschke:Ein Professor der Universität Würzburg […]. In:Franken 2024. Franken-Wissen für das ganze Jahr. Emons Verlag, Köln 2023,ISBN 978-3-7408-1797-8, Blatt22. Dezember.
↑Heinz Otremba,Walther Gerlach:Wilhelm Conrad Röntgen. Ein Leben im Dienste der Wissenschaft. Würzburg 1970.
↑Horst Teichmann:Die Entwicklung der Physik im 4. Saeculum der Universität Würzburg erläutert an der Geschichte eines Institutsgebäudes. In:Peter Baumgart (Hrsg.):Vierhundert Jahre Universität Würzburg. Eine Festschrift. Neustadt/Aisch 1982 (=Quellen und Beiträge zur Geschichte der Universität Würzburg. Band 6), S. 787–807, hier: S. 793 f.
↑Die erste medizinische Anwendung der Röntgenstrahlen in der Türkei zum Beispiel ist für 1897 belegt. Vgl. Ali Vicdani Doyum:Alfred Kantorowicz unter besonderer Berücksichtigung seines Wirkens in İstanbul (Ein Beitrag zur Geschichte der modernen Zahnheilkunde). Medizinische Dissertation, Würzburg 1985, S. 79–80.
↑Paul Diepgen,Heinz Goerke:Aschoff/Diepgen/Goerke: Kurze Übersichtstabelle zur Geschichte der Medizin. 7., neubearbeitete Auflage. Springer, Berlin/Göttingen/Heidelberg 1960, S. 49 und 57.
↑Amy Berrington de González, Sarah Darby:Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. In:Lancet.Band363,Nr.9406, 31. Januar 2004,S.345–351,doi:10.1016/S0140-6736(04)15433-0.
↑C. M. Heyer, S. Peters, S. Lemburg, V. Nicolas:Einschätzung der Strahlenbelastung radiologischer Thorax-Verfahren: Was ist Nichtradiologen bekannt? In:RöFö.Band179,Nr.3, 2007,ISSN1438-9029,S.261–267. zitiert nachDer Allgemeinarzt: Fortbildung und Praxis für den Hausarzt.Nr.8, 2007,ISSN0172-7249,S.18.
↑Andrew J. Einstein, Milena J. Henzlova, Sanjay Rajagopalan:Estimating Risk of Cancer Associated With Radiation Exposure From 64-Slice Computed Tomography Coronary Angiography. In:JAMA.Band298,Nr.3, 2007,S.317–323 (Abstract).
↑Prashant Kaul von der Abteilung für Kardiovaskuläre Medizin des Duke University Medical Centers in Durham und Kollegen, Bericht auf der AHA-Tagung 2009.
↑OLG Jena, Urteil vom 12. Juli 2006, Az. 4 U 705/05, Volltext. Der Senat befasst sich mit der Frage, ob und ggf. unter welchen Voraussetzungen ein Arzt für Hautschäden anlässlich einer Röntgenuntersuchung haftet.
↑Patent US4365342A: X-Ray film changer for the serial radiography. Angemeldet am 23. Januar 1980, veröffentlicht am 21. Dezember 1982, Anmelder: Picker Int Inc, Erfinder: Tamas A Vepy.
↑Keiler, J., Richter, S. and Wirkner, C. S. (2013):Evolutionary morphology of the hemolymph vascular system in hermit and king crabs (Crustacea: Decapoda: Anomala). J. Morphol., 274: 759–778.doi:10.1002/jmor.20133
↑Tim Stinauer: Durchblick der besonderen Art. In: ksta.de. 4. Mai 2010, archiviert vom Original (nicht mehr online verfügbar) am 15. September 2012; abgerufen am 16. Januar 2017.
Dieser Artikel behandelt ein Gesundheitsthema. Er dient weder der Selbstdiagnose noch wird dadurch eine Diagnose durch einen Arzt ersetzt. Bitte hierzu denHinweis zu Gesundheitsthemen beachten!